1.Melting point of ice(OR) Freezing point of water
(OR)Solidification of water $=0^{0} \mathbf{C}$ or 273K
2. Boiling point of water $=100^{\mathbf{0}} \mathrm{C}$ or $\mathbf{3 7 3 K}$
3. Specific heat of ice(S) $=\mathbf{0 . 5} \mathrm{cal} / \mathrm{g}-{ }^{0} \mathrm{C}$
4. Specific heat of water $(S)=\mathbf{1} \mathbf{~ c a l} / \mathrm{g}-{ }^{0} \mathrm{C}$
5. Latent heat of fusion of ice $(\mathrm{L})=\mathbf{8 0} \mathbf{~ c a l} / \mathbf{g}$
6. Latent heat of fusion of water $(\mathrm{L})=\mathbf{5 4 0} \mathbf{~ c a l} / \mathbf{g}$
7. Refractive index of air(n)=1.0003 or $\mathbf{1}$
8. Refractive index of $\operatorname{Diamond}(\mathrm{n})=\mathbf{2 . 4 2}$
9. Critical angle of Diamond $=\mathbf{2 4 . 4}{ }^{\mathbf{0}}$
10.At critical angle of incidence, the angle of refraction $=\mathbf{9 0}^{\boldsymbol{0}}$
11.Sign of the object distance from the lens taken as -ve
12.Focal length of the convex or convergent lens taken as $+\mathbf{v e}$
13. Focal length of the concave or divergent lens taken as -ve
14. Least distance of distinct vision of human being is 25 cm
15. Least distance of distinct vision at young age is 7 or $\mathbf{8 ~ c m}$
16. Least distance of distinct vision at old age is $\mathbf{1}$ to $\mathbf{2 ~ m ~ o r}$ even more
17.The angle of vision for a healthy human being is $\mathbf{6 0}{ }^{\mathbf{0}}$
18.Range of the focal length of the human eye lens is
2.27 cm (Minimum) to 2.5 cm (Maximum)
19. Distance between eye lens to retina is 2.5 cm
20.Number of receptors in retina is $\mathbf{1 2 5}$ million
21.If person suffering from Myopia, then Focal length is less than 2.5 cm
22.If person suffering from Hypermetropia, then Focal length is more than $2.27 \mathbf{~ c m}$
23.Rainbow is formed when the angle between the incoming and outgoing rays are $40^{\circ} \mathrm{C}$ to 42°
24.The intensity is maximum at $\mathbf{9 0}^{\mathbf{0}}$ angle of scattering
25.Range of resistance of the human body is 100Ω to 500000Ω
26. $1 \mathrm{KWH}=\mathbf{3 . 6 \times 1 0}{ }^{6} \mathbf{J}$
27. The p^{H} of neutral solutions is 7
28. The p^{H} of acidic solutions is $\mathbf{0}$ to below 7
29. The p^{H} of basic solutions is above 7 to 14
30. The p^{H} scale is from $\mathbf{0 - 1 4}$
31. Tooth decay start when the p^{H} of mouth is lower than 5.5
32.Number of water molecules present in washing soda is $\mathbf{1 0}$
33. The value of Plank constant $=6.626 \times 10^{-34} \mathrm{Js}$
$34 . l$ value of s-orbital is $\mathbf{0}$
35. l value of p -orbital is $\mathbf{1}$
36. l value of d-orbital is 2
37. $(\mathrm{n}+l)$ value of 3 d orbital $=(3+2)=5$
38. Spin of electron is $\mathbf{+ 1 / 2}$ means clockwise direction
39. Spin of electron is $\mathbf{- 1 / 2}$ means anticlock wise direction
40. 1 pm (pico meter) $=10^{-12} \mathbf{~ m}$
41.No.of periods and no.of groups in modern periodic table are 7 and 18
42.In NaCl crystal, coordination number of Na^{+}is $\mathbf{6}$ and coordination number of Cl° is 6
43. Bond angle in BeCl_{2} is $\mathbf{1 8 0}^{\mathbf{0}}$
44. Bond angle in NH_{3} is $\mathbf{1 0 7}^{\mathbf{0}} \mathbf{4 8}^{\mathbf{1}}$
45. Bond angle in BF_{3} is $\mathbf{1 2 0}^{\mathbf{0}}$
46. Bond angle in $\mathrm{H}_{2} \mathrm{O}$ is $\mathbf{1 0 4}^{\mathbf{3}} \mathbf{3 1}{ }^{\mathbf{1}}$
47. Bond angle in CH_{4} is $\mathbf{1 0 9}^{\mathbf{2}} \mathbf{2 8}{ }^{\mathbf{1}}$
48.No.Of carbons in Buckminsterfullerene is $\mathbf{6 0}$
49.Fullerene $\left(\mathrm{C}_{60}\right)$ contains $\mathbf{1 2}$ pentagonal and $\mathbf{2 0}$ hexagonal faces

Units

1.S.I unit of Temperature is Kelvin(K)
2.S.I unit of Heat is Joule (J)
3. C.G.S unit of Heat is calorie (cal)
4.S.I unit of Specific heat is $\mathbf{J} / \mathbf{k g}-\mathbf{K}$
5. CGS unit of Specific heat is $\mathbf{c a l} / \mathbf{g}-{ }^{0} \mathbf{c}$
6.S.I unit of Latent heat is $\mathbf{J} / \mathbf{k g}$
7. CGS unit of Latest heat is cal/g
8.S.I or CGS unit of refractive index is no unit
9.S.I unit of power of the lens is dioptre(D)
10.S.I unit of Current is ampere(A) or C/s
11.S.I unit of electric charge (Q) is Coloumb(\mathbf{C})
12.S.I unit of potential or potential difference or electromotive force(emf) is volt(V)
13.S.I unit of resistance is $\mathbf{O h m}(\boldsymbol{\Omega})$
14.S.I unit of Specific resistance or Resistivity is ohm-m (Ω-m)
15.S.I unit of conductance is mho or Ω^{-1}
16.S.I unit of conductivity is $(\Omega-\mathrm{m})^{-1}$
17.S.I unit of electric power is watt
18.S.I unit of electric energy is KWH
19.S.I unit of Magnetic flux is weber
20.S.I unit of Magnetic flux density or Magnetic field or magnetic field induction (B) is $\mathbf{w b} / \mathbf{m}^{2}$ or tesla
21.S.I unit of Induced emf is volt
22. Units of atomic radius is pico meter(pm)
23. Unit of Ionization energy is $\mathrm{KJ} / \mathrm{mol}$

Shape/Structure

1.S-orbital (OR) $l=0$ shape is Sherical
2. p-orbital (OR) $l=1$ shape is dumbell
3.d-orbital (OR) $l=2$ shape is double dumbell
4. NaCl - Face centred cubic lattice crystal structure
5.Methane $\left(\mathrm{CH}_{4}\right)$ shape is Tetrahedral
6. BeCl_{2} shape is Linear
7. BF_{3} shape is Trigonal
8. NH_{3} shape is pyramidal
9. $\mathrm{H}_{2} \mathrm{O}$ shape is V -shape
10.Diamond shape is Tetrahedral environment
11.Graphite shape is Trigonal Planar environment
12.Buckminsterfullerene (C_{60}) shape is Soccer ball
13.For ohmic conductors, the shape of V-I graph is Straight line passing through origin
14.For non-ohmic conductors, the shape of V-I graph is curved

Connections

1.Ammeter is always connected in series to the circuit
2.Voltmeter is always connected in parallel to the Circuit
3.Head lights of a vehicle connected in parallel
4.House hold appliances are connected in parallel
5.Decation lamps are connected in series
6.In series connection, current is same
7.In parallel connection, potential difference is same

Equations

1) $\mathbf{1 c a l}=4.186 \mathrm{~J} \quad$ 2) $\mathbf{0}^{0} \mathrm{C}=273 \mathrm{~K}$
2) $K=C+273 \quad 4) Q=m S \Delta T$
3) $\mathbf{1 c a l} / \mathrm{g}-{ }^{0} \mathrm{C}=4.186 \times 103 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$
4) Final or mixture temperature $(T)=m_{1} T_{1}+m_{2} T_{2} /\left(m_{1}+m_{2}\right)$
7)Latent heat of fusion or Latent heat of Evaporation $(\mathbf{L})=\mathbf{Q} / \mathbf{m}$
8)Refractive index or Absolute refractive index $(\mathbf{n})=\mathbf{C} / \mathbf{V}$
9)Relative refractive index $\left(\mathbf{n}_{21}\right)=\mathbf{n}_{2} / \mathbf{n}_{1}=\mathbf{v}_{1} / \mathbf{v}_{\mathbf{2}}$
5) Snell's law $\mathbf{n}_{\mathbf{1}} \sin \mathbf{i}=\mathbf{n}_{\mathbf{2}} \sin \mathbf{r} \quad$ 11) Critical angle, $\boldsymbol{\operatorname { S i n }} \mathbf{C = 1 / n 1 2}$
12)Refractive index of glass
slab(n)=Thickness of the glass slab/
(Thickness of the glass slab - Vertical shift)
6) 1 micrometer $=10^{-6} \mathbf{m} \quad$ 14) Radius of curvature (R) $=\mathbf{2 f}$
7) Formula used at curved surface $\frac{n 2}{v}-\frac{n 1}{u}=(n 2-n 1) / R$
16)Formula used at plane surface $\frac{n 2}{v}-\frac{n 1}{u}=0$ (OR) $n 2 / v=n 1 / u$
17)Lens formula $\frac{\mathbf{1}}{f}=\frac{\mathbf{1}}{v}-\frac{\mathbf{1}}{u}$
18)Lens maker's formula $\frac{\mathbf{1}}{\boldsymbol{f}}=(\boldsymbol{n}-\mathbf{1})\left(\frac{\mathbf{1}}{\boldsymbol{R 1}}-\frac{\mathbf{1}}{\boldsymbol{R 2}}\right)$
19)Focal length of symmetrical converging lens (or) equi convex lens $f=\frac{\boldsymbol{R}}{2(n-1)}$
8) Focal length of bi-convex lens $\frac{1}{f}=(n-1)\left(\frac{1}{R 1}+\frac{1}{R 2}\right)$
21)Focal length of plano-convex lens $\boldsymbol{f}=\frac{\boldsymbol{R}}{\boldsymbol{n - 1}}$
9) Focal length of symmetrical converging lens (or) equi convex lens $\boldsymbol{f}=-\frac{\boldsymbol{R}}{2(\boldsymbol{n}-\mathbf{1})}$
10) Focal length of bi-convex lens $\frac{1}{f}=-(n-1)\left(\frac{1}{R 1}+\frac{1}{R 2}\right)$
11) Focal length of plano-convex lens $\boldsymbol{f}=-\frac{\boldsymbol{R}}{\boldsymbol{n - 1}}$
12) If person suffering from myopia, the focal length of the eye lens is $\mathbf{f}=\mathbf{- D}$
13) If person suffering from hypermetropia, the focal length of the eye lens $\boldsymbol{f}=\frac{\mathbf{2 5 d}}{\boldsymbol{d - 2 5}}$
27)Power of the lens $(\mathbf{P})=\frac{1}{f} \quad(f$ in metre)
14) Power of the lens $(\mathbf{P})=\frac{\mathbf{1 0 0}}{\boldsymbol{f}} \quad$ (f in centimeter)
15) Refractive index of the prism(n) $=\frac{\boldsymbol{\operatorname { s i n }}(\boldsymbol{A}+\boldsymbol{D})}{2} / \sin \left(\frac{\boldsymbol{A}}{2}\right)$
30)Electric current $\boldsymbol{I}=\frac{\boldsymbol{Q}}{\boldsymbol{t}} \quad$ 31)Potential difference $\boldsymbol{V}=\frac{\boldsymbol{W}}{\boldsymbol{q}}$
32)Ohm's law equation $\boldsymbol{V}=\boldsymbol{I R} \quad$ 33)Resistivity $\rho=\frac{R A}{l}$
16) Effective Resistance in series $\boldsymbol{R}=\boldsymbol{R} \mathbf{1}+\boldsymbol{R} \mathbf{2}+\boldsymbol{R} \mathbf{3}$
35)Effective Resistance in parallel $\frac{\mathbf{1}}{R}=\frac{\mathbf{1}}{R 1}+\frac{1}{R 2}+\frac{1}{R 3}$
17) Electric power $\boldsymbol{P}=\boldsymbol{V I}=\mathbf{I}^{2} \mathbf{R}=\mathbf{V}^{2} / \mathbf{R}$
37)Magnetic flux density(B)= Magnetic flux(Φ)/Area(A)
38)Formula of magnetic flux when plane makes an angle with the magnetic field $\quad \Phi=B A \cos \theta$
39)Formula of magnetic flux when plane is perpendicular to the magnetic filed $\quad \Phi=B A$
18) Formula of magnetic flux when plane is parallel to magnetic field $\quad \Phi=0$
41)The force experienced by a charge moving in a magnetic making some angle is $F=q V B$ sine
42)The force experienced by a charge moving perpendicular to the field is $F=q V B$
19) The force experienced by a charge moving parallel to the field is $\mathrm{F}=0$
44)If $\boldsymbol{\theta}$ be the angle between direction of current and magnetic field , then the force acting on the current currying wire is given by $\mathrm{F}=\mathrm{ILB}$ sine
45)The force acting on the current currying wire when direction of current is perpendicular to field is $F=$ ILB
20) The force acting on the current currying wire when direction of current is parallel to field is $\mathrm{F}=0$
48)Faraday law of induction of equation is $\varepsilon=\frac{\Delta \Phi}{\Delta t}$
49)Induced emf (ε) $=B / \mathrm{V}$
21) Planck equation $E=h v$
51)Acid + Base \rightarrow Salt+water

Formulae

1)Bleaching poweder $-\mathrm{CaOC}_{2}$
2)Baking soda(Sodium hydrogen carbonate) $-\mathrm{NaHCO}_{3}$
3)Washing Soda(Sodium Carbonate) $-\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
4)Gypsum(Calcium sulphate)-CaSO $4.2 \mathrm{H}_{2} \mathrm{O}$
5)Plaster of paris(Calcium sulphate hemihydrates)$\mathrm{CaSO}_{4} .1 / 2 \mathrm{H}_{2} \mathrm{O}$
6)Methane- CH_{4}
7)Urea- $\mathrm{CON}_{2} \mathrm{H}_{4}$
8) General formula of Alkanes- $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$
9) General formula of Alkenes- $\mathrm{C}_{n} \mathrm{H}_{2 n}$
10) General formula of Alkynes- $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}$
11)Stearic Acid- $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}$

Indicators-Colours

- Natural indicators- Blue and red litmus
- Synthetic indicators-Methyle orange and Phenolphthalein
$>\operatorname{Acid}\left(\mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}, \mathrm{CH}_{3} \mathrm{COOH}\right)$-Blue litmus changes to Red colour
$>$ Base $\left(\mathrm{NaOH}, \mathrm{KOH}, \mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{NH}_{4} \mathrm{OH}\right)$-Red litmus changes to Blue colour
$>$ Acid-Methyle Orange changes to red colour
$>$ Acid-Phenolphthalein changes to no colour
\Rightarrow Base- Methyle Orange changes to yellow colour
$>$ Base- Phenolphthalein changes to pink colour

Dependable factors

1)Heat- Nature of the substance, mass, change in Temperature
2)Specific heat-nature of the substance,Temperature
3)Evaporation-Surface area, temperature and amount of vapour already present in the surrounding air
4)Refractive index-Natural of material, Wave length of light used
5)Focal length of the lens-Surrounding medium
6) Focal length of eye's lens-Working of ciliary muscles
7)Resistance of the material-Nature of material,

Temperature, length and cross section area of the Material
8)Resistivity-Nature of the material and temperature

Another Name

$>$ Refractive index- Absolute refractive index
$>$ Myopia-Near Sightedness
$>$ Hypermetropia-Far sightedness
$>$ Specific Resistance-Resistivity
$>$ Magnetic flux density-Magnetic Induction Magnetic field
> P^{H} Scale- Sorenson
> Scattering of light-Sir C.v.Raman
$>$ Circular orbits and Principal quantum number-Bohr
> Elliptical Orbits and Angular momentum quantum number(I)-Sommerfeld
$>$ Quantum theory -Max Planck
$>$ The filling order of atomic orbitals-Moeller
> First classification of elements -Dobereriner
$>$ Law of triads-Dobereriner
$>$ Law of Octaves-Newland
$>$ Electronegativity values for element on the basis of bond energies-Pauling
$>$ The valence electrons in the atom of an element is depicated in a short form-Lewis
$>$ Electronic theory of valence-Lewis and Kossel
> VSEPRT-Sidgwick and Powell
> The ratio of $\operatorname{Sin} i$ and $\sin r$ is constant-Snell's law
$>$ The ratio between V and I is constant-Ohm
> Junction law and Loop law -Kirchhoff
> Buckminsterfullerene (C_{60})-Curl,Kroto and Smalley
> Nanotubes-Sumio li jima
Identify
1)Specific heat capacity-Stabilising atmospheric temperature, water melon contain longer time cooling, Samosa contains ingredient with higher specific heat
2) p^{H} in everyday life-Living organisms can survive only a narrow range of p^{H}, Tooth decay start lower than 5.5,Digestive system, p^{H} of the soil
3)Bleaching Poweder-Textial industry,Oxidizing agent,Disinfecting drinking water, preparation of chloroform
4)Baking soda-Mild antiseptic, Soda-acid in fire extinguishers, Ingredient in antacids
5)Washing soda-Glass,soap and paper industries, manufacture of borax, cleaning agent, removing permanent hardness of water
6)Plaster of paris-Making toys, materials for decoration and for making surfaces smooth
7)Total internal reflection-Mirages, Brilliance of diamond, Optical fibres
8)Lens-Telescope, binoculars,cameras, Glasses
9)Myopia- use Concave lens
10) Hypermetropia-use Convex lens
11)Presbyopia-Use bi-focal lens
12) Kirchhoff's laws-Any DC circuit containing batteries and resistors connected in any way
13)Fuse- Save the house holding wiring and devices by using Fuses, prevent damages due to overloading
14)Faraday's law induction-Security checking,Tape recorder,ATM machines, Induction stove, Electrical generators

1

2

3

Write the direction of the current from the given figure

What type of material indicates given figure

Identify the light phenomenon involved this figure

Identify the eye defect from the given figure

Identify the eye defect from the given figure

Identify the phenomenon

4

5

6

Symbols

Visit: srini science mind

