Srini science mind.com
 $10^{\text {TH }}$ CLASS-PHYSICAL SCIENCE
 IMPORTANT PROBLEMS ($\mathbf{1 / 2}$ MARK TO 4 MARKS)

1.Convert $20^{\circ} \mathrm{C}$ into Kelvin Scale? (1 Mark)

Ans: $\mathrm{C}=20^{\circ} \mathrm{C}, \mathrm{K}=$?

$$
\mathrm{K}=\mathrm{C}+273=20+273=293 \mathrm{~K}
$$

2.Convert 546 K into Celsius Scale(1 Mark)

Ans: We know that $\mathrm{C}=\mathrm{K}-273$

$$
\begin{aligned}
& =546-273 \\
& =273 \mathrm{~K}
\end{aligned}
$$

3.1 g of ice at $0^{0} \mathrm{C}$ and 1 g of water at $40^{0} \mathrm{C}$ are mixed. What is resultant temperature? ($1 / 2$ Mark)

Ans: $0^{0} \mathrm{C}$
Explanation: 1 g of ice at $0^{\circ} \mathrm{C} \rightarrow 1 \mathrm{~g}$ of water at $0^{\circ} \mathrm{C}(\mathrm{Q})=\mathrm{mL}=1 \times 80=80 \mathrm{cal}$
1 g of water at $40^{\circ} \mathrm{C} \rightarrow 1 \mathrm{~g}$ of water at $0^{\circ} \mathrm{C}(\mathrm{Q})=\mathrm{ms} \Delta \mathrm{T}=1 \times 1 \times 40=40 \mathrm{cal}$
Heats are not equal,So some ice present in the mixer. Resultant
temperature is $0^{\circ} \mathrm{C}$
4.4 kg of water is $100^{\circ} \mathrm{C}$ temperature how much heat energy is required for whole water to evaporate? (2 Mark) Ans: $\mathrm{m}=4 \mathrm{~kg}=4000 \mathrm{~g}$
$\mathrm{L}=540 \mathrm{cal}$
$\mathrm{Q}=\mathrm{mL}=4000 \times 540=216 \times 10^{4}$ cal
5.What would be the final temperature of a mixture of 50 g of water at $20^{\circ} \mathrm{C}$ temperature and 50 g of water at $40^{\mathbf{0}} \mathrm{C}$

temperature? (2 Marks)

Ans: $\mathrm{m}_{1}=50 \mathrm{~g}$
$\mathrm{m}_{2}=50 \mathrm{~g}$
$\mathrm{T}_{1}=20^{\circ} \mathrm{C} \quad \mathrm{T}_{2}=40^{\circ} \mathrm{C}$

Final temperature $(\mathrm{T})=m 1 T 1+m 2 T 2 / m 1+m 2=(50 X 20+50 X 40) / 100=(1000+2000) / 100=30^{0} \mathrm{C}$
6.How much heat energy is required when 10 g of water at $25^{\circ} \mathrm{C}$ convert to $75^{0} \mathrm{C}$ of water? (2 Marks)

Ans: $\mathrm{m}=10 \mathrm{~g}, \mathrm{~S}=1 \mathrm{cal} / \mathrm{g}-{ }^{0} \mathrm{C}, \mathrm{T}_{1}=25^{0} \mathrm{C}, \mathrm{T}_{2}=75^{\circ} \mathrm{C}$

$$
\mathrm{Q}=\mathrm{mS}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=10 \times 1 \times(75-25)=10 \times 50=500 \mathrm{cal}
$$

7. Calculate required heat energy to change 12 g of ice at $-10^{0} \mathrm{C}$ into water vapour at $100^{0} \mathrm{C}$ (4 Marks)

Ans: $\quad \mathrm{m}=10 \mathrm{~g}, \mathrm{~S}_{\text {ice }}=0.5 \mathrm{cal} / \mathrm{g}^{0} \mathrm{c}, \mathrm{S}=1 \mathrm{cal} / \mathrm{g}^{-}{ }^{0} \mathrm{c}, \quad \mathrm{L}_{\mathrm{F}}=80 \mathrm{cal} / \mathrm{g}, \quad \mathrm{L}_{\mathrm{E}}=540 \mathrm{cal} / \mathrm{g}$

$$
\begin{aligned}
& \mathrm{Q}_{1}=\mathrm{ms}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=12 \times 0.5(0+10)=6 \times 10=60 \mathrm{cal} \\
& \mathrm{Q}_{2}=\mathrm{mL}=12 \times 80=960 \mathrm{cal} \\
& \mathrm{Q}_{3}=\mathrm{ms}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=12 \times 1(100-0)=12 \times 100=1200 \mathrm{cal} \\
& \mathrm{Q}_{4}=\mathrm{mL}=12 \times 540=6480 \mathrm{cal}
\end{aligned}
$$

Heat energy required $(Q)=Q_{1}+Q_{2}+Q_{3}+Q_{4}=60+960+1200+6480=8700$ cal
8.Answer these. (4 Marks)
a) How much energy is transferred when 1 gm of boiling water at $100^{\circ} \mathrm{C}$ condenses to water at $100^{\circ} \mathrm{C}$?
b) How much energy is transferred when 1 gm of water at $100^{\circ} \mathrm{C}$ cools to water at $0^{\circ} \mathrm{C}$?
c) How much energy is released or absorbed when 1 gm of water at $0^{\circ} \mathrm{C}$ freezes to ice at $0^{0} \mathrm{C}$?
d) How much energy is released or absorbed when 1 gm of steam at $100^{\circ} \mathrm{C}$ turns to ice at $0^{0} \mathrm{C}$?(4 Marks)

Ans: $\mathrm{m}=1 \mathrm{~g}, \mathrm{~S}_{\mathrm{ice}}=0.5 \mathrm{cal} / \mathrm{g}-{ }^{\circ} \mathrm{C}, \quad \mathrm{S}_{\text {water }}=0.5 \mathrm{cal} / \mathrm{g}-{ }^{\circ} \mathrm{C}, \quad \mathrm{L}_{\mathrm{F}}=80 \mathrm{cal} / \mathrm{g}, \quad \mathrm{L}_{\mathrm{E}}=540 \mathrm{cal} / \mathrm{g}$

a) $\mathrm{Q}_{1}=\mathrm{mL}=1 \times 540=540 \mathrm{cal}$
b) $\mathrm{Q}_{2}=\mathrm{mL}+\mathrm{ms}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=1 \times 540+1 \times 1(100-0)=540+100=640 \mathrm{cal}$
c) $\mathrm{Q}_{3}=\mathrm{mL}=1 \mathrm{x} 80=80 \mathrm{cal}$
d) $\mathrm{Q}=640+80=720 \mathrm{cal}$ (or) $540+100+80=720 \mathrm{cal}$
9.The concentration of \mathbf{H}^{+}of the solution is 10^{-14}. What is the p^{H} value of the solution? ($1 / 2$ Mark)

Ans: $\left[\mathrm{H}^{+}\right]=10^{-14}$
$\mathrm{p}^{\mathrm{H}}=-\log _{10}\left[\mathrm{H}^{+}\right]=-\log _{10}\left[10^{-14}\right]=14 \log _{10} 10=14 \mathrm{x} 1=14$
10.The refractive index of glass is $\mathbf{3} / \mathbf{2}$. Find the speed of light in glass? (1 Mark)

Ans: $n=3 / 2 \quad \mathrm{C}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

```
v=?
n=C/v
    v=C/n=3\times10 8}\times2/3=2\times1\mp@subsup{0}{}{8}\textrm{m}/\textrm{s
```

11.Refractive index of glass relative to water is $9 / 8$. What is the refractive index of water relative to glass?(1 Mark)

Ans: $\mathrm{n}_{\mathrm{gw}}=9 / 8$

$$
\mathrm{n}_{\mathrm{wg}}=1 / \mathrm{n}_{\mathrm{gw}}=8 / 9
$$

12.Determine the refractive index of benzene if the critical angle is $42^{\mathbf{0}}$ (2 Marks)

Ans: $\mathrm{c}=42^{0}$

$$
\begin{aligned}
& \mathrm{n}=? \\
& \mathrm{n}=1 / \sin c=1 / \sin 42^{0}=1 / 0.6691=1.49
\end{aligned}
$$

13. A light ray is incident on air-liquid interface at 45^{0} and is refracted at 30°. What is the refractive index of the liquid? For what angle of incidence will the angle between reflected ray and refracted ray be 90° ? (4 Marks)
Ans: $\mathrm{i}=45^{0} \quad \mathrm{r}=30^{0} \quad \mathrm{n}=$?

$$
n=\sin i / \sin c=\sin 45^{\circ} / \sin 30^{\circ}=\frac{\frac{1}{\sqrt{2}}}{1} 2 \sqrt{ } 2=1.414
$$

The angle between reflected and refracted rays is 90°

$$
\begin{gathered}
\mathrm{i}+\mathrm{r}=90^{\circ} \\
\mathrm{r}=90-\mathrm{i} \\
\mathrm{n}=\boldsymbol{\operatorname { t a n }} \mathbf{i} \\
1.414=\tan \mathrm{i} \\
\mathrm{i}=\tan ^{-1}(1.414)=\mathbf{5 4 . 7 ^ { 0 }}
\end{gathered}
$$

14.Refractive index and thickness of the glass slab are $1.5,3 \mathrm{~cm}$ respectively. Find the vertical shift of the glass slab?

(2 Marks)

Ans:

$$
\mathrm{n}=1.5
$$

Thickness $=3 \mathrm{~cm}$
Vertical shift=?
$n=$ thickness of slab $/($ thickness of slab - vertical shift $)$
$1.5=3 / 3-$ verical shift
Vertical shift=4.5-3/1.5=1.5/1.5=1 cm
15.The focal length of a converging lens is 20 cm . An object is 60 cm from the lens. Where will the image be formed and what kind of image is it ? (4 Marks)
Ans: $f=20 \mathrm{~cm} \quad u=-60 \mathrm{~cm} \quad v=$?

$$
\begin{aligned}
& \frac{1}{f}=\frac{1}{v}-\frac{1}{u} \\
& \frac{1}{20}=\frac{1}{v}+\frac{1}{60} \\
& \frac{1}{v}=\frac{1}{20}-\frac{1}{60}=3-1 / 60=2 / 60=1 / 30 \\
& \mathrm{v}=\mathbf{3 0} \mathrm{cm}
\end{aligned}
$$

Real , diminished and inverted image Image forms between F_{1} and $2 F_{1}$

```
v<u ---> Diminished image
F=20 cm and C (2F2)=40 cm---> Between F F and 2F F
    m=v/u=30/-60=-1/2 - sign means Real image
```

16.An electric lamp and a screen are placed on the table, in a line at a distance of $1 \mathbf{m}$. In what positions of convex lens of focal length of $f=21 \mathrm{~cm}$ will the image of lamp be sharp? (4 Marks)
Ans: Distance between lamp and screen=1 $\mathrm{m}=100 \mathrm{~cm}$
Let distance between lamp and lens $(u)=-\mathrm{x} \mathrm{cm}$
Distance lens and screen $(v)=(100-x) \mathrm{cm}$
lens formula

$$
\begin{aligned}
& \frac{1}{f}=\frac{1}{v}-\frac{1}{u} \\
& \frac{1}{21}=\frac{1}{100-x}+\frac{1}{x}=\frac{100}{x(100-x)}==\frac{100}{100 x-x^{2}} \\
& \mathrm{x}^{2}-100 \mathrm{x}+2100=0 \\
& \mathrm{x}^{2}-70 \mathrm{x}-30 \mathrm{x}+2100=0 \\
& \mathrm{x}(\mathrm{x}-70)-30(\mathrm{x}-70)=0 \\
& \mathrm{x}-70=0 \quad \text { or } \quad \mathrm{x}-30=0 \\
& \mathrm{x}=70 \mathrm{~cm} \quad \text { or } \quad \mathrm{x}=\mathbf{3 0} \mathrm{cm}
\end{aligned}
$$

17. What is the focal length of double concave lens kept in air with two spherical surfaces of radii $R_{1}=30 \mathrm{~cm}$ and $R_{2}=60 \mathrm{~cm}$.

Take refractive index of lens as $n=1.5$ (2 Marks)
Ans: $\quad \mathrm{n}=1.5, \quad \mathrm{R}_{1}=30 \mathrm{~cm}, \quad \mathrm{R}_{2}=60 \mathrm{~cm}$
Lens maker's formula for double concave lens $\frac{1}{f}=-(n-1)\left[\frac{1}{R 1}+\frac{1}{R 2}\right]$

$$
\begin{aligned}
& \frac{1}{f}=-(1.5-1)\left[\frac{1}{30}+\frac{1}{60}\right]=-(0.5)\left[\frac{3}{60}\right]=-\frac{1}{2} X \frac{1}{20}=-\frac{1}{40} \\
& \mathbf{f}=-40 \mathrm{~cm}
\end{aligned}
$$

18. Find the radii of curvature of a convexo-concave convergent lens made of glass with refractive index $n=1.5$ having focal length of 24 cm . One of the radii of curvature is double the other. (4 Marks)
Ans: $\mathrm{n}=1.5 \quad \mathrm{f}=24 \mathrm{~cm}$
Let $\quad R_{1}=R$ and $R_{2}=2 R$
Lens maker's formula of convexo- concave lens $\frac{1}{f}=(n-1)\left[\frac{1}{R 1}-\frac{1}{R 2}\right]$

$$
\begin{aligned}
& \frac{1}{24}=(1.5-1)\left[\frac{1}{R}-\frac{1}{2 R}\right]=(0.5)\left[\frac{1}{2 R}\right]=\frac{1}{2} X \frac{1}{2 R}=\frac{1}{4 R} \\
& \mathrm{R}=6 \mathrm{~cm} \\
& \mathbf{R}_{\mathbf{1}}=\mathbf{R}=\mathbf{6} \mathbf{~ c m} \text { and } \mathbf{R}_{\mathbf{2}}=\mathbf{2 R}=\mathbf{2 \times 6}=\mathbf{1 2} \mathbf{c m}
\end{aligned}
$$

19.Doctor advised to use 2D lens. What is its focal length? (1 Mark)

$$
\begin{array}{ll}
\text { Ans: } & \mathrm{P}=2 \mathrm{D}, \mathrm{f}=? \\
& \mathrm{f}=100 / \mathrm{P}=100 / 2=\mathbf{5 0} \mathbf{~ c m}
\end{array}
$$

20.A prism with an angle $A=60^{0}$ produces an angle of minimum deviation of 30°. Find the refractive index of material of the prism (2 Marks)
Ans: $\mathrm{A}=60^{\circ}, \quad \mathrm{D}=30^{\circ}$
Refractive index of the prism $\quad n=\frac{\frac{\operatorname{Sin}(A+D)}{2}}{\operatorname{Sin}\left(\frac{A}{2}\right)}=\frac{\operatorname{Sin}\left(60^{\circ}+30^{\circ}\right)}{2}-\frac{\operatorname{Sin} 45^{\circ}}{\operatorname{Sin}\left(\frac{60^{0}}{2}\right)}=\frac{\frac{1}{\sqrt{2}}}{\operatorname{Sin} 30^{\circ}}=\sqrt{2}=\mathbf{1 . 4 1 4}$
21. A light ray falls on one of the faces of a prism at an angle 40° so that it suffers angle of minimum deviation of 30^{0}. Find the angle of prism and angle of refraction at the given surface. (2 Marks)
Ans: $\mathrm{i}=40^{\circ} \quad \mathrm{D}=30^{\circ}$
We know that $i=\frac{(A+D)}{2}$

$$
\mathrm{A}=2 \mathrm{i}-\mathrm{D}=2 \times 40^{2}-30^{0}=80^{\circ}-30^{0}=\mathbf{5 0} 0^{0}
$$

Also $\mathrm{r}=\mathrm{A} / 2=50^{\circ} / 2=\mathbf{2 5}^{\circ}$
22.The focal length of a lens suggested to a person with Hypermetropia is 100 cm . Find the distance of near point and power of the lens? (4 marks)
Ans: $\mathrm{f}=100 \mathrm{~cm} \quad \mathrm{~d}=$? $\quad \mathrm{P}=$?
Focal length of lens in hyperrmetropia $\quad f=\frac{25 d}{d-25}$

$$
\begin{aligned}
& 100=\frac{25 d}{d-25} \\
& 100 \mathrm{~d}-2500=25 \mathrm{~d} \\
& 75 \mathrm{~d}=2500 \\
& \mathbf{d}=2500 / 75=\mathbf{3 3 . 3 3} \mathbf{~ c m}
\end{aligned}
$$

Power of the lens $P=100 / f=100 / 100=1 D$
23.The wave length of a radio wave is 1.0 m . Find its frequency (1 Mark)

Ans: $\lambda=1 \mathrm{~m} \quad \mathrm{C}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad \mathrm{v}=$?
We know that $\mathrm{C}=0 \lambda$

$$
V=\mathrm{C} / \lambda=3 \times 10^{8} / 1=\mathbf{3} \times 10^{8} \mathbf{H z}
$$

24.If the resistance of your body is 100000Ω what would be the current that flows in your body when you touch the terminals of a 12 V battery? (2 Marks)
Ans: $\mathrm{R}=100000 \Omega, \quad \mathrm{~V}=12 \mathrm{~V}, \quad \mathrm{I}=$?
From Ohm's law V=IR
$\mathrm{I}=\mathrm{V} / \mathrm{R}=12 / 100000=\mathbf{0 . 0 0 0 1 2 \mathrm { A }}$
25. A uniform wire of resistance 100Ω is melted and recast into wire of length double that of the original. What would be the resistance of the new wire formed? (4 Marks)
Ans:

$$
\begin{array}{r}
\text { Before recast } \\
\mathrm{R}_{1}=100 \Omega \quad l_{1}=l \quad \mathrm{~A}_{1}=\mathrm{A} \\
\text { Use formula } \frac{R 2}{R 1}=\frac{l 2 X A 1}{l 1 X A 2} \\
\frac{R 2}{100}=\frac{2 l X A}{l X A} X 2=4 \\
\mathrm{R}_{2}=400 \Omega
\end{array}
$$

26.Three resistors of values $2 \Omega, 4 \Omega, 6 \Omega$,are connected in series. Find the equivalent resistance of combination of resistors? (1 Mark)
Ans: $\mathrm{R}_{1}=2 \Omega \quad \mathrm{R}_{2}=4 \Omega \quad \mathrm{R}_{3}=6 \Omega$
Equivalent resistance in series $R=R_{1}+R_{2}+R_{3}$

$$
=2+4+6=\mathbf{1 2 \Omega}
$$

27. Three resistors of values $2 \Omega, 4 \Omega, 6 \Omega$, are connected in parallel. Find the equivalent resistance of combination of resistors? (2 Marks)
Ans: $\mathrm{R}_{1}=2 \Omega \quad \mathrm{R}_{2}=4 \Omega \quad \mathrm{R}_{3}=6 \Omega$
Equivalent resistance in series $\frac{1}{R}=\frac{1}{R 1}+\frac{1}{R 2}+\frac{1}{R 3}=\frac{R 1 R 2+R 2 R 3+R 3 R 1}{R 1 R 2 R 3}=\frac{2 X 4+4 X 6+6 X 2}{2 X 4 X 6}=\frac{8+24+12}{2 \times 4 \times 6}=\frac{44}{48}=\frac{11}{12} \Omega$
28.Two bulbs have ratings $100 \mathrm{~W}, 220 \mathrm{~V}$ and $60 \mathrm{~W}, 220 \mathrm{~V}$. Which one has the greatest resistance? (2 Marks)

Ans: $\quad \underline{1}$ bulb
$\mathrm{P}=100 \mathrm{~W} \quad \mathrm{~V}=220 \mathrm{~V}$
$\mathrm{R}=\mathrm{V}^{2} / \mathrm{P}$
$\mathrm{R}=220 \mathrm{X} 220 / 100$
$R=484 \Omega$
$\quad \begin{aligned} & \mathbf{2}^{\text {nd }} \text { bulb } \\ & \mathrm{P}=60 \mathrm{~W} \\ & \mathrm{R}=\mathrm{V}^{2} / \mathrm{P} \\ & \mathrm{R}=220 \mathrm{X} 220 / 60 \\ & \mathrm{R}=806.6 \Omega\end{aligned} \mathrm{~V}=220 \mathrm{~V}$
$2^{\text {nd }}$ bulb has the greatest resistance
29.A wire of length 1 m and radius 0.1 mm has a resistance of 100Ω. Find the resistivity of the material? (2 Marks)

Ans: $\quad l=1 \mathrm{~m} \quad \mathrm{r}=0.1 \mathrm{~mm}=0.1 \times 10^{-3} \mathrm{~m}=10^{-4} \mathrm{~m} \quad \mathrm{R}=100 \Omega$

$$
\begin{aligned}
& A=\pi r^{2}=3.14 \mathrm{X}\left(10^{-4}\right)^{2}=3.14 \times 10^{-8} \mathrm{~m}^{2} \\
& \operatorname{Resistivity}(\rho)=\mathrm{RA} / l=100 \times 3.14 \times 10^{-8} / 1=\mathbf{3 . 1 4} \times 10^{-6} \Omega-\mathrm{m}
\end{aligned}
$$

30.A house has 3 tube lights, two fans and a Television. Each tube light draws 40 W . The fan draws 80 W and the Television draws 60 W . On the average, all the tube lights are kept on for five hours, two fans for 12 hours and the television for five hours every day. Find the cost of electric energy used in 30days at the rate of Rs.3.00 per KWH (4 Marks)
Ans: i) No. of tube lights $=3$
Wattage $=40 \mathrm{~W}$
Used hours $=5$
No.of units consumed for tube lights $=\frac{\text { No.of lightX WattageXUsed hours } X 30}{1000}=\frac{3 \times 40 \times 5 \times 30}{1000}=18 \mathrm{KWH}$
ii) No. of Fans= 2

Wattage $=80 \mathrm{~W}$
Used hours= 12
No.of units consumed for Fans $=\frac{\text { No.of fansX WattageXUsed hours } X 30}{1000}=\frac{2 \times 80 \times 12 \times 30}{1000}=57.6 \mathrm{KWH}$
iii) No. of Television= 1

Wattage $=60 \mathrm{~W}$
Used hours $=5$
No.of units consumed for Fans $=\frac{\text { No.of fansX WattageXUsed hours } X 30}{1000}=\frac{1 \times 60 \times 5 \times 30}{1000}=9 \mathrm{KWH}$
Total units consumed for 30 days $=18+57.6+9=84.6 \mathrm{KWH}$
Cost of $1 \mathrm{KWH}=3 /-$
Cost of 84.6 KWH=84.6 X 3=253.8/-
31. Find the quantity of current in the above circuit(2 Marks)

Ans: $\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$
$\mathrm{R}=3+5+2=10 \Omega$
$\mathrm{V}=1.5 \mathrm{~V}$
$\mathrm{I}=\mathrm{V} / \mathrm{R}=1.5 / 10=\mathbf{0 . 1 5} \mathrm{A}$
32. Find the equivalent resistance (1 Mark)

Ans: $\quad R=2+\frac{2 X 2}{2+2}=2+1=\mathbf{3 \Omega}$
33.The value of magnetic field induction which is uniform is $2 T$. What is the flux passing through a surface of area $1.5 \mathbf{m}^{\mathbf{2}}$ perpendicular to the field? (2 Marks)
Ans: $\mathrm{B}=2 \mathrm{~T}, \quad \mathrm{~A}=1.5 \mathrm{~m}^{2}$

$$
\Phi=\mathrm{BA}
$$

Magnetic flux $(\Phi)=2 \times 1.5=3$ weber
34. A force of 8 N acts on a rectangular conductor 20 cm long placed perpendicular to a magnetic field. Determine the magnetic field induction if the current in the conductor is 40 A (2 Marks)

$$
\text { Ans: } \quad \mathrm{F}=8 \mathrm{~N}, \quad l=20 \mathrm{~cm}=0.2 \mathrm{~m}, \quad \mathrm{I}=40 \mathrm{~A}
$$

Required formula $\mathrm{F}=\mathrm{BIL}$

$$
B=\frac{F}{I L}=\frac{8}{40 \times 0.2}=\frac{8}{8}=1 \mathrm{Tesla}
$$

