Pre-Final Examinations
 (2019-2020)
 $10^{\text {th }}$ Physical Science
 Principles of Evaluation
 Section-I

$$
\left(12 x \frac{1}{2}=6 M a r k s\right)
$$

1. C)Both P and Q are correct
2. Tooth decay starts
3. b)Due to total internal reflection
4. a)concave lens always forms virtual images
5. d) lens
6. B) $1-c, 2-d, 3-b, 4-a$
7. Kossel and Lewis
8. c) MgCl_{2}
9. Nature of the material, Temperature, length and area of cross section
10. $\operatorname{Power}(\mathrm{P})=\mathrm{VI}=23 \times 2=46 \mathrm{~W}$
11. $\mathrm{Fe}_{2} \mathrm{O}_{3} / \mathrm{Fe}_{3} \mathrm{O}_{4}$
12. Sodium Chloride (NaCl)

Section-II

(8x1=8Marks)
13. Water absorb more heat energy due to high specific heat
14.The reaction of acid with a base to give a salt and water is known as a neutralization reaction

$$
\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

15.Copper sulphates crystals,test tube holder, Boiling tube, Burner,
16. The ratio of speed of light in the first medium to the speed of light in the second medium is known as relative refractive index
17. $\quad \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}$
$\mathrm{n}=1.5$

$$
\begin{aligned}
& \frac{1}{f}=(n-1)\left(\frac{2}{R}\right)=(1.5-1)\left(\frac{2}{R}\right)=\frac{\left(\frac{1}{2}\right) \times 2}{R}=\frac{1}{R} \\
& \mathrm{f}=\mathrm{R}
\end{aligned}
$$

18. Surgical equipments, cooking utensils (write any two uses)
19.

20.Electronegativity of an element is the average value of its ionization energy and electron affinity (OR)

Electronegativity $=\frac{\text { ionization energy energy }+ \text { electron affinity }}{2}$

Section-III

$$
(8 x 2=16 \text { Marks })
$$

21.

Orbital	4 s	3 d
$(\mathrm{n}+l)$ value	$(4+0)=4$	$(3+2)=5$

According Aufbau principle electron enters least $(\mathrm{n}+l)$ value orbital. So electron enter into 4 s , instead of 3 d after 3 p
22. Due to total internal reflection. Light rays before striking the air bubbles have to travel through water. These light rays which strike the air bubbles at angles greater than critical angle for water-air interface are totally reflected. So the air bubbles appear silvery.
23. The ciliary muscles to which eye lens is attached helps the eye lens to change its focal length by changing the radii of curvature of the eye lens
24.i) The direction of the field lines of the outside the magnet is from N-pole to S-pole
ii) The direction of the field lines of the inside the magnet is from S-pole to N-pole
iii)Magnetic lines are closed loops
iv) Magnetic lines are curved lines
v)Any magnetic lines are cannot coincide each other
(Write any two points)
25. The phenomenon of possessing same molecular formula but different properties by the compounds is known as Isomerism.
Ex: Butane can exhibit two different isomers

	CH_{3}
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$	$\mathrm{CH}_{3}-\mathrm{C} H-\mathrm{CH}_{3}$
(n-Butane)	(Iso butane)

26.i) Esters are used for making artificial flavours and essences
ii) Esters are used for making perfumes
iii) Esters are used as plasticizers
iv) Esters are used as solvents for oil,fats, gums etc
(Write any two uses)
27. Total internal reflection is the main reason for brilliance of diamonds. The critical angle of a diamond is very $\operatorname{low}\left(24.4^{0}\right)$. So if a light ray enters a diamond it is very likely to undergo total internal reflection which makes the diamond shine
Note: Write explanation of mirage/ Working of optical fibres
28.

S.No	Functional group	Structural formula	Example
1	Amine		$\mathrm{CH}_{7} \mathrm{NH}_{2}$
2		R-C=O-R	$\mathrm{CH}_{3} \mathrm{OCH}_{5}$
3	Alcohol	R-OH	

Section-IV

$$
(5 \times 4=20 \mathrm{Marks})
$$

29.a)
i) Boiling: Boiling is a process in which the liquid phase changes to gaseous phase at a constant temperature at a given pressure, This temperature is called boiling point of the liquid.
Boiling point of water is $100^{\circ} \mathrm{C}$ or 373 K
ii) Melting: Melting is a process in which the solid phase changes to liquid phase at constant temperature at a given pressure. This temperature is called Melting point of the solid.
Melting point of ice is $0^{0} \mathrm{C}$ or 273 K
iii) Freezing: The process in which the substance in liquid phase changes to solid phase by losing some of its energy is called freezing
Freezing of water takes place at $0^{0} \mathrm{C}$ temperature and one atmospheric pressure
iv)Humidity: The amount of water vapour present in air is called humidity

Some of vapour may comes from evaporation of water from the surfaces of rivers, lakes, ponds etc
(OR)
b) i) As shown in figure, R_{1}, R_{2} and R_{3} resistors are connected in series
ii) Let V_{1}, V_{2} and V_{3} are the potential differences across the three resistors
iii) In series connection, same amount of current(I) flows in the three resistors
iv) According to Ohm's law $V_{1}=I R_{1}$

$$
\begin{aligned}
& \mathrm{V}_{2}=\mathrm{IR}_{2} \\
& \mathrm{~V}_{3}=\mathrm{IR}_{3}
\end{aligned}
$$

v) In series, $V=V_{1}+V_{2}+V_{3}=I R_{1}+\mathrm{IR}_{2}+\mathrm{IR}_{3}=\mathrm{I}\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}\right)$
vi) Let R be the equivalent resistance of the combination of resistances in series

$$
\mathrm{V}=\mathrm{IR}_{\mathrm{eq}}
$$

vii) $\quad \mathrm{IR}_{\mathrm{eq}}=\mathrm{I}\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}\right)$
$R_{\text {eq }}=R_{1}+R_{2}+R_{3}$
viii) The sum of the individual resistance is equal to their equivalent resistance when the resistors are connected in series
30. a) Aim: Finding the refractive index of a prism

Material required: Prism, piece of white chart, pencil, pins, scale and protractor.

Procedure: i) Place the prism on the white chart and draw the outline of the prism by using pencil
ii) Remove the prism and identify the vertices of prism are P, Q and R
iii)Measure the prism angle(A) iv)Mark M on the side of PQ and draw the normal to PQ at M
v)Draw a line making some angle to the normal at M . This is angle of Incident
vi)Now place the prism in its position again. Fix the two pins A and B on the incident ray
vii)Now identify the images of A, B are C and D on the other side (PR) of the prism
viii) Draw a line joining C, D and extend it to meet PR . This is emerging ray.

ix) Draw a normal to PR at N
x) Join M and N . Extends incident ray and. emerging ray, they are meet at O. Also extends two normals
xi)Repeat this experiment with different incident angles and measures the corresponding emerging angles and deviation angles
xii) Measure the angle of minimum deviation(D) by I-d graph
xiii)Now calculate the refractive index of the prism by using the formula $n=\frac{\frac{\sin (A+D)}{2}}{\sin \left(\frac{A}{2}\right)}$

b) Explain Faraday's law of induction
i) Connect the terminals of a coil to a sensitive galvanometer as shown in the figure
ii)Normally, we would not expect any deflection of needle in the galvanometer because there is no EMF in the circuit.
iii)Now, if we push a bar magnet towards the coil, with its N-pole facing the coil, we observe the deflections in the galvanometer
iv) If the magnet is moved away from the coil, again we observe the deflections in the
 galvanometer in opposite direction
v)If we use S-pole of a magnet, same results but opposite in previous one
vi)From this activity we conclude that the change in magnetic flux linked with a closed coil, produces current.
31. a)
i) Atomic radius: In group, atomic radius increases from top to bottom. Because a new shell is added, the distance between nucleus and the outer shell increases
In period, atomic radius decreases from left to right. Because same number of shells, the nuclear attraction on the outershell increases.As a result atomic radius decreases .
ii) Electro positivity: In group, Electro positivity increases from top to bottom. Because atomic radius increases In period, Electro positivity decreases from left to right. Because atomic radius decreases
iii) Ionization energy: In group, Ionization energy decreases from top to bottom. Because atomic radius increases In period, Ionization energy increases from left to right. Because atomic radius decreases
iv) Electron affinity: In group, Electron affinity decreases from top to bottom. Because atomic radius increases In period, Electron affinity increases from left to right. Because atomic radius decreases

(OR)

b) Hybridisation is a phenomenon of intermixing of atomic orbitals of almost equal energy which are present in the outer shells of the atom and their reshuffling or redistribution into the same number of orbitals but with equal properties

Formation of $\mathbf{N H}_{3}$:

i) N has electronic configuration $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}_{\mathrm{x}}{ }^{1} 2 \mathrm{p}_{\mathrm{y}}{ }^{1} 2 \mathrm{p}_{\mathrm{z}}{ }^{1}$
ii) N atom is said to undergo sp^{3} hybridisation. In this process 2 s and $2 \mathrm{p}_{\mathrm{x}}, 2 \mathrm{p}_{\mathrm{y}}, 2 \mathrm{p}_{\mathrm{z}}$
 orbitals of nitrogen intermix and redistribute into four identical sp^{3} orbitals.
iii) One of the four sp^{3} orbitals get a pair of electrons and the other three sp^{3} orbitals get one electron each.
iv)Now hydrogen atoms overlap their 1 s orbitals containing unpaired electrons the sp^{3} orbitals of N atom containing unpaired electrons to give three $\sigma \mathrm{s}-\mathrm{sp}^{3}$ bonds.
v)Bond angle in HNH is $107^{0} 28^{1}$

S.No	Electron entering orbital	Principle quantum number	Angular momentum quantum number	Magnetic quantum number	Spin quantum number
1	$3 \mathrm{~s}^{1}$	3	0	0	$+1 / 2$ or $-1 / 2$
2	$2 \mathrm{p}^{1}$	2	1	-1	$+1 / 2$ or $-1 / 2$
3	$4 \mathrm{f}^{1}$	4	3	-3 or -2 or -1 or 0 or 1 or 2 or 3	$+1 / 2$ or $-1 / 2$
4	$5 \mathrm{~s}^{1}$	5	0	0	$+1 / 2$ or $-1 / 2$

(OR)
b) i) Gold(Au), Silver(Ag) and Copper (Cu)
ii) Aluminum
iii) Very reactive
iv) $\mathrm{Al}_{2} \mathrm{O}_{3} 2 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{MgSO}_{4} 7 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{CaSO}_{4} 2 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{KClMgCl}_{2} 6 \mathrm{H}_{2} \mathrm{O}$
33.a) i) Object at Infinity
ii) Object placed at centre of curvature (2F)

fig-8(c)

iv)Object placed between focal point and optic centre

(OR)
b)

fig-3: Acid solution in water conducts electricity

