

MODEL LESSON PLAN

CLASS: 10

SUBJECT: PS

Name of the Teacher: M.SRINIVASA RAO Name of the Name

Name of the School: A.G.K.M.H.School, Gudivada

Name of the	Торіс	No.of Periods	Timeline for teaching		Any specific
Lesson/Unit		Required	From	То	information
	Refraction	1	xx/xx/xxxx	xx/xx/xxxx	
	Refractive index – Relative refractive index	2	xx/xx/xxxx	xx/xx/xxxx	
Refraction of	Snell's law verification	2	xx/xx/xxxx	xx/xx/xxxx	
Light at Plane	Critical angle – Total internal reflection -	1	xx/xx/xxxx	xx/xx/xxxx	
Surfaces	Mirages	1	xx/xx/xxxx	xx/xx/xxxx	
	Applications of total internal reflection	1	xx/xx/xxxx	xx/xx/xxxx	
	Refraction through a glass slab	2	xx/xx/xxxx	xx/xx/xxxx	

Prior Concept/Skills:		
1. State laws of reflection.		
2. Define reflection of light		
3. What is the real image?		
4. Does light travel from air to water or water to air?		
Learning Outcomes:	No. of Periods	
1. Explains processes and phenomena of twinkling of stars.	1	
2. Differentiates materials based on properties and characteristics of real and virtual images.	1	
3.Calculate using the date of refractive index of materials	1	
4. Plans and Conducts investigations and experiments to arrive at and verify the facts, principles of Snell's law		
5.Derives formulae, equations and laws of refraction of light at plane surfaces	1	
6. Seek answers to queries on their own "Why Snell's law does not applicable in normal direction".		
7. Plans and Conducts investigations and experiments to arrive at and verify the facts of laws of refraction.		
8. Explains processes and phenomena of formation of Mirages, Total internal reflection	1	
9. Applies learning to hypothetical situations of total internal reflection		
10. Applies scientific concepts in daily life and solving problems of total internal reflection.	1	
11. Exhibits creativity in designing models using eco-friendly resources of formation of mirages.	1	
12. Handles tools and laboratory apparatus properly: measures lateral shift and vertical shifts using appropriate apparatus.		
13. Draws the labelled diagrams of lateral and vertical shifts of glass slab.	1	
	_	

3. Explain and conduct an activity of refraction through the shallow vessel, coin and water.		3. Write the definition of refraction of light.	3. If light rays travel in the normal direction, what is the speed of light?	
4. Explain the concepts of refractive index and relative refractive index.	3. Collect the information of refractive indices of materials	4. Students give reasons for no units of refractive index.		
5. Discussion of refractive indices of some material media.	4. Group discussion on "Why do different material media possess different values of refractive	5. Solved the problems on refractive index.	4. Why the refractive index of kerosene is more than that of the refractive	
6. Explain and conduct of Snell's law verification.	indices?	6. Express the mathematical notation of Snell's law.	index of water?	
7. Explain and conduct an activity of i < r when light rays travel from denser to rarer medium.	5. Conduct activity and record the observations.	7. Students complete the homework.	5. Is Snell's law is applicable, when light ray travels in the normal direction?	
8. Explain concepts of the critical angle and total internal reflection with activities.	6. Solved the problems on critical angle	8. Write the laws of refraction?	6. Define Critical angle	
9. Discussion and explain the formation of mirages.	7. Students frame some questions in order to find out how mirages are formed.	9. Students will identify the conditions for the formation of mirages.	7. Why should you see a mirage as a flowing water?	
10. Explain the applications of total internal reflection.		10. Students learn where total internal reflection is used in the medicine and	8. Write the applications of total internal reflection	
11. Conduct and discussion of finding lateral shift using glass slab.	8. Students draw the diagram of lateral shift using glass slab.	communication fields.		
12. Conduct and explain of finding the refractive index of glass slab.	9. Students describe the procedure of the activity.	11.Write the mathematical expression of refractive index of glass slab.	9. What is the angle of deviation produced by the glass slab?	

Check For Understanding Questions	TLM's (Digital + Print)							
1. Factual:								
1. Is the refraction of light essentially a surface phenomenon?	1. Used prepared Quiz							
2. Why does light ray follows Fermat's principle?	paper.							
3. Why does light bend in refraction?								
4. Why is sine used in Snell's law?	2. Utilized digital classroom.							
2. Open Ended/Critical Thinking:								
1. Can total internal reflection occur from air to water? Discuss	3. DIKSHA App							
2. A piece of glass disappears when immersed in glycerin – why?								
3. Can a medium have a refractive index less than 1?	4. YouTube Videos							
4. Why there is no critical angle for light travelling from water to glass?								
3. Student Practice Questions & Activities:								
a) Explain the formation of mirage?								
b) How do you verify experimentally that sin i/sin r is a constant?								
c) How do you verify experimentally that the angle of refraction is more than angle of incidence when light								
rays travels from denser to rarer medium.								
d) Explain the refraction of light through a glass slab with a neat ray diagram.								
Assessment:								
1. Collect information on working of optical fibres. Prepare a report about various uses of optical fibres in our dai	ly life.							
2. Observe the table. Answer the following quistions?								
Material medium Water Benzene Turpentine oil Kerosene								
Refractive index 1.33 1.50 1.47 1.44								
i) Which of the above material media, speed of light is less? ii) Among water and kerosene, which is optically denser?								
3. Frame some questions to know about the formation of mirage.								
4. Why should you see a mirage as a flowing water?								

SIGNATURE OF THE TEACHER

SIGNATURE OF THE HEADMASTER

VISITING OFFICER WITH REMARKS