

MODEL LESSON PLAN

CLASS: 10

SUBJECT: PS

Name of the Teacher: M.SRINIVASA RAO Nam

Name of the School: A.G.K.M.H.School, Gudivada

Name of the	Торіс	No.of Periods	Timeline for teaching		Any specific
Lesson/Unit		Required	From	То	information
Refraction of Light at Curved Surfaces (Chapter-4)	Refraction of light at a curved surface	1	xx/xx/xxxx	xx/xx/xxxx	
	Examples and Solutions	1	xx/xx/xxxx	xx/xx/xxxx	
	Lenses	1	xx/xx/xxxx	xx/xx/xxxx	
	The behaviour of certain light rays when they are incident on a lens	1	xx/xx/xxxx	xx/xx/xxxx	
	Ray diagrams of the convex lens	2	xx/xx/xxxx	xx/xx/xxxx	
	Determination of focal length of bi-convex lens using UV method	1	xx/xx/xxxx	xx/xx/xxxx	
	Len's formula, Solved problems	1	xx/xx/xxxx	xx/xx/xxxx	
	Focal length of a convex lens is increased when it is kept in water				
	Lens maker's formula	1	xx/xx/xxxx	xx/xx/xxxx	
	Problems-Solutions				

Prior Concept/Skills:

1. Write the laws of refraction of light.

2. What is the cause of refraction?

3. What is normal to the refracting surface?

Looming Outcomore	No. of Dorioda
Learning Outcomes:	No. of Periods
1. Classifies lenses based on properties and characteristics.	1
2. To seek answers to queries on their own of any ray passing through the optic centre is undeviated.	1
3. Draws labelled diagrams, flow charts, concepts maps of bi-convex lens ray diagrams	1
4. Analyses and interprets data and figure of object distance and image distance of convex lens.	1
5. Applying scientific concepts in daily life of lenses	1
6. Uses scientific convention to represent units of various quantities, symbols, formulae and equations of sign convention in	
optics, SI units	
7. Handles tools and laboratory apparatus properly, measures physical quantities using appropriate apparatus, instruments and	1
devices of finding the focal length of lens by UV method.	
8. Analyses and interprets figures of ray diagrams.	1
9. Calculates using the data of focal length of a lens.	1
10. Relates processes and phenomena with causes and effects 'On what factors does the focal length of the lens depend?	1

11. Draws conclusion of focal length of convex lens and surroundings

12. Plans and conducts investigations and experiments to arrive at and verify the fact of the focal length of a convex lens is increased when it is kept in water

Experience and Reflection:

- 1. Students will know what kind of lenses to use for which occasion in their daily life.
- 2. Students learn the characteristics of images formed by lenses through drawing of ray diagrams.
- 3. Students will understand ray diagrams in order to find the focal length of the lens.

Explicit Teaching/Teacher Modelling	Group Work (We Do)	Independent Work (You Do)	Notes for:
(I D0)			
1. Discussion and conduct an activity on	1. Students conduct the activity and	1. Students write the	1. When a real image is
refraction of light with help of a black	observed the characteristics of the	differences between real and	formed?
sketch, thick paper sheet, transparent	arrow mark without water and with	virtual image?	
glass tumbler.	water in the glass tumbler.		

2. Discussion and explain the refraction of light at curved surfaces with ray diagrams.	2. What happens to ray that is incident on a curved surface separating the two media? – Group discussion	2. Students draw the normal to the curved surfaces.	2. What is the radius of curvature of the plane surface?
3. Explain the textual examples	3. Students solved the problems	3. Students complete the homework.	$3. \frac{n^2}{v} - \frac{n^1}{u} = \frac{n^2 - n^1}{R}$ Explain the terms in it?
4. Discussion and demonstration of types of lenses	4. Students identify the types of lenses.	4. Students draw the different types of lenses.	4. What is a lens?
5. Explain the terminology used in the lenses.	5. Students identify the principle axis, centre of curvatures, radii of curvature, focal lengths, focal points.	5. Students give reasons, why R= 2f for all lenses.	5. Define the focal point of lens?
6. Discussion and Explain the behaviour of certain light rays when they are incident on a lens.	6. Group discussion on rules to draw ray diagrams for image formation by lenses	6. Students explain in which cases a ray of light undeviated and deviated.	6. Write the symbols of convex and concave lenses.
7. Discussion and Explain the ray diagrams of the convex lens.	7. Students draw the ray diagrams of convex lens when object kept at different positions	7. Students write the characteristics of images formed by a convex lens.	7. What are the rules to draw ray diagram of convex lens?
8. Discussion and explain the ray diagrams of the concave lens.	8. Students draws the ray diagrams of concave lens when object kept at different positions	8. Students solved the problems on the focal length of a concave lens.	8. Is concave lens diverging or converging?
9. Conduct experiment of determination of focal length of bi-convex lens using UV method.	9. Students arrange the apparatus in a proper way and express the procedure of the experiment.	9. Students complete the homework.	9. What are the materials required to find the focal length of a convex lens
10. Explain lens formula and its Problems.	10. Students solved the problems on lens formula	10. Collect the information of uses of lenses in our day to	in UV method? 10. Write a lens formula?
11. Discussion and conduct an activity on the focal length of a convex lens is increased when it is kept in water.	11. Students conduct an activity	day life situations. 11. On what factors does the focal length of the lens depend?	11. Why an air bubble in water behaves like a diverging lens?

Check For Understanding Questions	TLM's (Digital+Print)
1. Factual:	
1. Are the laws of refraction valid for curved surfaces?	1. Used prepared Quiz
2. What is the purpose of drawing ray diagrams for lenses?	paper.
3. Why are real images inverted?	
	2. Utilized digital
2. Open Ended/Critical Thinking:	classroom.
1. Why is there no refraction at the circular surface?	
2. Why there are only two cases of the formation of images in the concave lens?	3. Provide video link
3. Is focal length always positive?	QR codes, DIKSHA App
3. Student Practice Questions & Activities:	Difform ripp.
1 How do you find the focal length of a lens experimentally?	4 YouTube video's link
2. The focal length of a converging length is 20cm. An object is 60cm from the length where will the image be formed	
and what kind of image is it?	
3. How do you verify experimentally that the focal length of a convex lens is increased when it is kept in water?	
4. Your friend is not able to distinguish between concave and convex lenses. Ask two suitable questions to	
understand the differences between the lenses.	
Assessment:	
1. Distinguish between Convex lens and Concave lens	
2. Draw ray diagrams for the Convex lens following positions and explain the nature and position the of image.	
1) Object at infinity 2) Object is placed at beyond 2F2 3) Object is placed at 2F2	
4) Object is placed between F2 and 2F2 5) Object is placed at F2	
6) Object is placed between F2 and optic centre	
3. Write the rules to draw ray diagrams for image formation by lenses.	
4. A double convex lens has two surfaces of equal radii 'R' and refractive index $n = 1.5$, find the focal length?	

SIGNATURE OF THE TEACHER

SIGNATURE OF THE HEADMASTER

VISITING OFFICER WITH REMARKS