

MODEL LESSON PLAN

CLASS: 09 SUBJECT: PS

Name of the Teacher: M.Srinivasa Rao

Name of the School: A.G.K.M.H.School, Gudivada

Name of the	Торіс	No.of Periods	Timeline for teaching		Any specific
Lesson/Unit		Required	From	То	information
MOTION	What is relative?	1	xx/xx/xxxx	xx/xx/xxxx	
	Distance and Displacement	2	xx/xx/xxxx	xx/xx/xxxx	
	Average speed and Average velocity	2	xx/xx/xxxx	xx/xx/xxxx	
	Speed and Velocity	2	xx/xx/xxxx	xx/xx/xxxx	
	Uniform motion	1	xx/xx/xxxx	xx/xx/xxxx	
	Non-uniform motion	1	xx/xx/xxxx	xx/xx/xxxx	
	Acceleration	1	xx/xx/xxxx	xx/xx/xxxx	
	Equations of uniform accelerated motion, problems	2	xx/xx/xxxx	xx/xx/xxxx	

Prior Concept/Skills:	
1. How many types of motions are based on the path taken by the bodies in motion?	
2. What is the rest of the object?	
3. What is the S.I unit of speed?	
4. How much distance from your home to school?	
5. What is the shape of your traveling path?	
Learning Outcomes:	No. of Periods
1. Describes scientific discoveries and inventions beliefs regarding motion.	1
2. Differentiates distance and displacement based on their physical properties.	1
3. Differentiates speed and velocity based on their physical properties.	1
4. Seek answers to queries on their own about how does speed of an object change?	1
5. Calculates using the data given of distance, velocity and speed,	1
6. Draws graphs of distance-time	1
7. Analyses and interprets graphs of distance-time	1
8. Draws graphs of speed-time graphs.	
9. Analyses and interprets graphs of velocity-time graphs.	1
10 Communicates the findings and conclusions effectively of distance-time and velocity-time graphs.	
To communicates are financias and conclusions effectively of albaneo time and veroeity time graphs.	1

11. Analyses and interprets graphs and figures of computing distance, speed, acceleration of objects in	
motion	1
12. Derives formulae, equations of motion from velocity-time graphs	1
13. Measures acceleration and velocity using appropriate apparatus, instruments, and devices.	1
14. Uses scientific convention, symbols and equations to represents initial velocity, final velocity,	
acceleration, displacement and time	

- 1. Students are collecting information on types of motions in our daily life.
- 2. Students observe the shapes of paths during their traveling time

3. Students are able to interpret graphical data.4. Students are able to understand the instantaneous speed/velocity and find its values in daily life.

Explicit Teaching/Teacher Modelling	Group Work (We Do)	Independent Work (You Do)	Notes for:	
1. Discussion about relative terms		1. Students give examples of relative terms?	1.Write the relative terms in your daily life?	
2. Discussion and examples of motion is relative	1. Collect the information of types of motion		2. Define displacement?	
3. Discussion and conduct an activity of drawing path and distinguishing between distance and displacement.	2. Group discussion on when distance becomes equal to displacement.	2. Draw the paths of distance and displacement.	3. Give an example of vector quantities?	
4. Explain and drawing displacement vectors.		3. Identify the scalars and vectors	4. How to represent a vector?	
5. Discussion and explain the average speed and average velocity with help of pictures/graphs	3. Solved the problems on average speed and average velocity.	4. Write the definition of average speed?	5. Write the formula of average speed?	
6. Conduct activities of measuring the average speed and average velocity.	4. Draw the shapes of graphs	5. Students complete the homework	6. Write the formula of average velocity?	
7. Explain speed and velocity			7 What is the S Lupit of	
8. Observing the direction of motion of a body	5. Conduct an oral quiz on speed and Velocity.	6. Describe the motion of a body.	velocity/	
9. Explain the uniform motion and draw the graph of distance –time			8. When the velocity is constant in the moving body?	
10. Explain the non-uniform motion and draw the graph of distance – time	6. Collect the information on uniform and non-uniform motions	7. Draw the graph of distance – time		
11. Discussion and observing uniform circular motion.			9. What is acceleration of the object?	

12. Observing the motion of an object thrown into air13. Explain the concept of acceleration	7. Give an examples of motion where there is a change only in speed but no change in direction of motion?	8. Solved the problems on Acceleration.	10. What is the average speed of a cyclist that 100m in 4 sec?11. Write the equations	
14. Derive and solve the problems on equations of uniform acceleration motion.	8. Solved the problems on motion.		of uniform accelerated motion?	
15. Conduct an activity to find the acceleration and velocity of the object moving on inclined track in Lab.	9. Discussion on conduct activity.	9. Express the producer of the experiment in own way .	12. Write the formula of acceleration and its units?	

Check For Understanding Questions	TLM's
1. Factual:	(Digital+Print)
1. How do we understand motion?	1. Used prepared Quiz
2. When does the average velocity becomes zero?	paper.
3. In uniform motion, Which physical quantity is constant?	
	2. Utilized digital
2. Open Ended/Critical Thinking:	classroom.
1. When do the distance and magnitude of displacement becomes equal?	
2. What happens to acceleration when an object moves in a uniform circular motion?	3. Collect the distance-
3. A particle is moving in a circular path of radius is 5m. What is its distance and displacement, when it complete one revolution?	time and velocity-time graphs.
4. An ant is moving on the surface of a ball. Does its velocity change or not?	
3. Student Practice Questions & Activities:	
1. Distinguish between speed and velocity.	
2. Draw the distance – time graph when its speed decreases uniformly.	
3. What do you mean by constant acceleration?	
4. Describe an activity to find the acceleration and velocity of an object moving on inclined track.	

Assessment:

- 1. The displacement of a moving object in a given interval of time is zero. Would the distance travelled by the object also be zero? Justify you answer.
- 2. Using following data, draw displacement time graph for a moving object.

Time(s)	0	2	4	6	8	10	12	14	16
Displacement(m)	0	2	4	4	4	6	4	2	0

Find average velocity for first 4 seconds, for next 4 seconds?

3. Collect the information of speed changes when direction remains constant, direction of motion changes when speed remains constant and speed, direction simultaneously change.

SIGNATURE OF THE TEACHER

SIGNATURE OF THE HEADMASTER

VISITING OFFICER WITH REMARKS