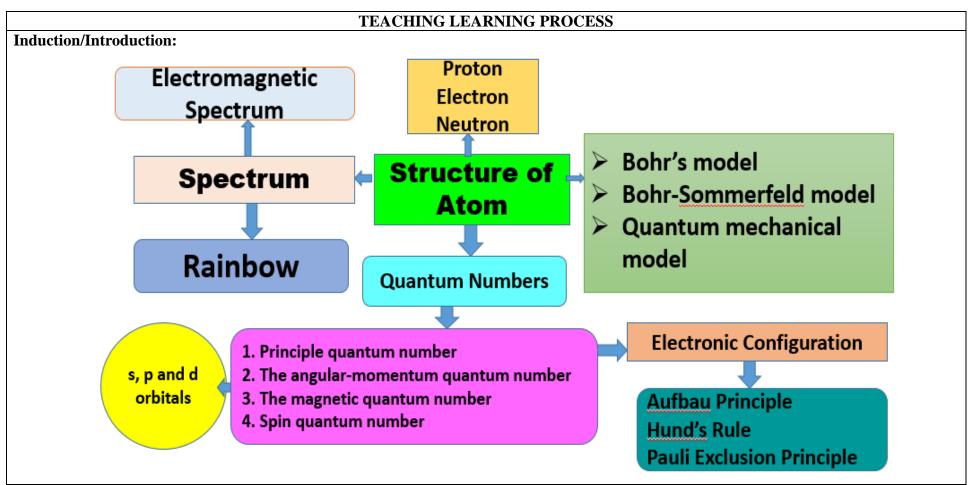


MODEL LESSON PLAN

CLASS: 10

SUBJECT: PS

Name of the Teacher: M.SRINIVASA RAO Name of the S


Name of the School: A.G.K.M.H.School, Gudivada

Name of the	Торіс	No.of Periods	Timeline f	or teaching	Any specific
Lesson/Unit		Required	From	То	information
	Spectrum	1	xx/xx/xxxx	xx/xx/xxxx	
	Electromagnetic Spectrum	1	xx/xx/xxxx	xx/xx/xxxx	
Structure of	Bohr's model of hydrogen atom and its limitations	2	xx/xx/xxxx	xx/xx/xxxx	
Atom	Bohr-Sommerfeld model of an atom	1	xx/xx/xxxx	xx/xx/xxxx	
(Chapter-6)	Quantum mechanical model of atom – Quantum numbers	4	xx/xx/xxxx	xx/xx/xxxx	
	Electronic Configuration – The Pauli Exclusion Principle	3	xx/xx/xxxx	xx/xx/xxxx	
	Aufbu Principle –Hund's Rule	3	xx/xx/xxxx	xx/xx/xxxx	

Prior Concept/Skills:

- 1. What are the three sub-atomic particles?
- 2. Why is atom stable?
- 3. Give the main postulates of Bohr's model of an atom.

Learning Outcomes:	No. of Periods
1. Calculates using the data of wavelength of light.	1
2. Takes initiative to know about scientific discoveries and inventions of atomic models.	1
3. Analyses and interprets data of quantum numbers of given electron.	1
4. Draw labelled diagrams of s,p,d-orbitals	1
5. Exhibits creativity in designing models using eco-friendly resources of working model of orbitals.	1
6. Draw labelled diagram of moeller chart.	1
7. Draw flow charts of electronic configurations of elements.	1
8. Analyses and interprets data of electronic configuration of elements,	2
9. Draws conclusion of filling order of atomic orbitals.	1
10. To seek answers to queries on their own of electronic configuration of copper and chromium.	1
11. Applies learning to hypothetical situations "What will happen if electronic configuration of elements unknown?	1
12. Explains processes of Aufbau principle with suitable examples	1
13. Explains processes of Hund's Principles with suitable examples	1
14. Explains processes of principles with suitable examples	1

Experience and Reflection:

- 1. Students will understand why only certain colours are used in traffic signals based on the wavelengths of colours in the visible spectrum.
- 2. Students will learn which rules to use to write the electronic configurations of elements.
- 3. Students will learn the importance of quantum numbers used to describe shells, sub-shells and spin of the electrons in an atom.

Explicit Teaching/Teacher Modelling (I Do)	Group Work (We Do)	Independent Work (You Do)	Notes for:
1. Discussion and exhibit of atomic Model.	1. Students collect the information on different atomic models.	1. Do all atoms have the same sub-atomic particles? – Give	1. What is the charge of an electron?
2. Discussion and Explain Spectrum and wave nature of light.	2. Why we were using red, green, yellow colours in the traffic signals? – Group discuss.	reason 2. Collect the information of regarding wavelength and corresponding frequencies	2. What is the longest wavelength in the visible spectrum?

		of three primary colours	
3. Explain Electromagnetic spectrum, Max Planck theory and its equation.	3. Students draw the electromagnetic wave	3. Students write the definitions of emission and absorption of light spectrum.	3. Write the Planck equation and 'h' value?
4. Explain and Showing the video about line spectra.	4. Students collect the uses of line spectra.	4. Students complete the homework.	4. What are line spectra?
5. Explain Bohr's model of hydrogen atom its limitations.	5. Students explain the limitations of Bohr's model of hydrogen atom.	5. Reading the biography of Neil's Bohr.	5. Why does the Bohr model not work for helium?
6. Discussion and Explain Bohr – Sommerfeld model of an atom.	6. Students observe the shapes of orbits	6. Students give reasons, Why Sommerfeld introduced elliptical orbits?	6. Define fine spectra?
7. Explain Quantum mechanical model of an atom.	7. Discussion on the importance of electrons in an atom.	7. Students write the definition of orbital.	7. Who developed the quantum mechanical model of atom?
 Discussion and Explain the significance of quantum numbers (Principal quantum number, The angular – momentum quantum number). 	8. Students draw the different shells around the nucleus and identify the shells and sub-shells.	8. Students represent the data of s.p.d and f sub-shells in tabular form.	8. How many values can ' <i>l</i> ' have for n=4?
9. Discussion and Explain the significance of quantum numbers (The magnetic quantum number, Spin quantum number)	9. Students collect the information on quantum numbers.	9. Students draw the s,p and d orbitals	9. What is the significance of spin quantum number?
 Discussion and Explain the nl^x Method. 	10. Group discussion on nl ^x method.	10. Students complete the homework.	10. What is electronic configuration?
11. Explain the Pauli Exclusion Principle with examples.	11. Can 2 electrons have the same quantum numbers? - Discuss	11. Students give a reason, "how many electrons can occupy an orbital"?	11. How many electrons can occupy an orbital?
12. Explain Aufbau Principle with examples and Moeller Chart.	12. Students express the Aufbau Principle in terms of quantum numbers.	12. Students draw the Moeller chart.	12. Out of 3d and 4s, which has more (n+l) value ? Explain
13. Explain Hund's Rule with examples.	13. Students explain Hund's rule with example	13. Students complete the homework.	13. Why Hund's rule not applicable for which

			subshell?
14. Discussion and explain 'How to	14. Why Copper and chromium	14. Students are write the	14. What are the 3 rules of
wrote the electronic configuration of	electronic configurations are	electronic configurations of	electron configuration?
elements?	different from other? Discuss	first 30 elements	_

Check For Understanding Questions	TLM's (Digital+Print)
1. Factual:	
1. Is Bohr model applicable to all atoms?	1. Used prepared Quiz
2. What is the order of electron configuration?	paper.
3. Why 1p orbital is not possible?	
	2. Utilized digital
2. Open Ended/Critical Thinking:	classroom.
1. What is the importance of electronic configuration?	
2. What would happen if the Pauli Exclusion Principle was violated?	3. Provide video links
3. Why the spin of electron is half?	QR codes, DIKSHA App
3. Student Practice Questions & Activities:	
1. Rainbow is an example for continuous spectrum – explain.	4. YouTube video
2. Explain the significance of three Quantum numbers in predicting the positions of an electron in an atom.	links
3. What is nl ^x method? How it is useful?	
4. Draw a diagram to show that the filling order of atomic orbitals and their ascending order of energies?	
Assessment:	
1. Atomic number of element is 17. Answer the following questions	
i) Write the name of the element ii) Write the electronic configuration	
iii) How many electrons are present in M-shell iv) Write the nearest noble gas element	
2. State and explain with one example of Aufbau principle?	
3. Write postulates and limitations of Bohr's model of hydrogen atom.	
4. Write the first 20 elements electronic configuration.	

SIGNATURE OF THE TEACHER

SIGNATURE OF THE HEADMASTER

VISITING OFFICER WITH REMARKS