

MODEL LESSON PLAN

CLASS: 10 SUBJECT: PS Name of the Teacher: M.SRINIVASA RAO Name of the School: A.G.K.M.H.School, Gudivada

Name of the	Торіс	No.of Periods	Timeline for teaching		Any specific
Lesson/Unit		Required	From	То	information
	Oersted experiment	1	xx/xx/xxxx	xx/xx/xxxx	
	Magnetic field – Lines of magnetic field	1	xx/xx/xxxx	xx/xx/xxxx	
	Magnetic flux - Magnetic flux density	1	xx/xx/xxxx	xx/xx/xxxx	
	Magnetic field due to currents	2	xx/xx/xxxx	xx/xx/xxxx	
Electromagnetism	Magnetic force on moving charge and Current carrying wire	2	xx/xx/xxxx	xx/xx/xxxx	
(Chapter – 10)	Electric Motor	2	xx/xx/xxxx	xx/xx/xxxx	
	Electromagnetic induction	2	xx/xx/xxxx	xx/xx/xxxx	
	Faraday's Law – lenz law – Applications of Faraday's law of	1		<u>vv/vv/vvvv</u>	
	electromagnetic induction	1	λλ/λλ/λλλλ	λλ/λλ/ΧΧΧΧ	
	Electric Generator and Alternating – Direct Currents	1	xx/xx/xxxx	xx/xx/xxxx	

Prior Concept/Skills:

- 1. Give examples of heating effects of electric current.
- 2. What is magnetic field? How many poles in a magnet?
- 3. Is there any relation between electricity and magnetism?

Learning Outcomes:	No. of Periods
1. Takes initiative to know about scientific discoveries and invention of Oersted's discovery that electricity and magnetism are related.	1
2. Plans and conducts investigations and experiments to arrive at and verify the facts of a current carrying wire produces a magnetic field.	1
3. Relates processes and phenomena with causes and effects of deflection of compass needle due to magnetic effect of electric current.	1
4. Draws labelled diagrams of magnetic field lines.	1
5. Uses scientific conventions to represent units of magnetic flux, magnetic flux density symbols, formulae and equation.	1
6. Draws conclusion of magnetic field due to electric field and electric field due to magnetic field.	1
7. Explains processes and phenomena of working of electric motor.	1
8. Communicates the findings and conclusions effectively of faraday law of electromagnetism.	1
9. Explains processes and phenomena of working of generator.	1

10. Applies scientific concepts in daily life and solving problems of applications of Faraday's law of electromagnetic induction	1
11 Draws labelled diagrams of electric motor and generator	1
11. Draws fabelled diagrams of electric motor and generator.	1
12. Exhibits creativity in designing models using eco-friendly resources of working model of electric motor and generator.	I
13. Makes efforts to conserve environment of uses energy efficient electric devices.	1
	l

Experience and Reflection:

- 1. Students learn the inextricable relationship between electricity and magnetism and apply it to future needs.
- 2. Students use devices that work on the basis of electromagnetic induction to avoid pollution of the environment.
- 3. Students will be able to tell which objects in their home, work by the electromagnetic induction.

Explicit Teaching/Teacher Modelling (I Do)	Group Work (We Do)	Independent Work (You Do)	Notes for:
1. Discussion and conduct Oersted Experiment.	1. Students explain procedure of Oersted experiment.	1. Students arrange the apparatus of the Oersted experiment.	1. Why does the needle get deflected by the magnet?
2. Explain and conduct an activity on magnetic field and lines of magnetic	2. "Magnetic field lines are open and they start at north pole of bar magnet	2. Students draw the magnetic field lines around the	2. What is magnetic field?

field.	and end at south pole"	magnet.	
	- Based on above statement rewrite		
	the statement and frame questions		
3. Explain uniform and non-uniform	3. Students explain uniform and non-	3. Students complete the	3. How can we find the
magnetic field.	uniform field.	nomework.	strength of the field and
4 Discussion and explain magnetic flux	4 Can we concretize the formula of	1 Students write the	4 What is the flux through
4. Discussion and explain magnetic flux	4. Call we generalize the formula of	4. Students while the	4. What is the flux through
and magnetic flux defisity.	taken in the field? Discuss	and magnetic flux density	the field?
5 Explain and Demonstrate magnetic	5 Students explain magnetic field due	5 Students compare the	5 Why do solenoid behaves
field due to straight wire carrying	to straight wire carrying current	magnetic field lines of a bar	like a har magnet?
current, magnetic field due to circular	magnetic field due to circular coil.	magnet and magnetic field	inte u sur mugnet.
coil, magnetic field due to solenoid.	magnetic field due to solenoid.	lines of a solenoid.	
6. Explain Magnetic force on the moving	6. Students collect information of	6. Students give the reason,	6. What happens to a
charge in parallel and perpendicular to	magnetic force on the moving	Why magnetic force is zero,	charged particle when it
a magnetic field.	charge in parallel and perpendicular	when a charge moving	moves perpendicular to a
	to a magnetic field.	parallel to a magnetic field?	magnetic field?
7. Discussion and explain Magnetic force	7. Group discussion on electric field	7. Students complete the	7. Write Right-hand rule for
on a current carrying wire which is	effects on the magnetic field.	homework.	positive charge.
placed along and perpendicular to a			
magnetic field.			
8. Explain and conduct an experiment on	8. Students conduct an experiment in	8 Students describe the	8 In which situation a
a current carrying conductor	the classroom with help of the	activity in own way.	current carrying does not
experiences a force when it is kept in	teacher.		experience any force in
magnetic field.			uniform magnetic field?
9. Demonstrate electric motor and	9. Students making models of electric	9. Students draw a neat	9. What happens when a
Explain the working of the electric	Motor.	diagram of the electric	coil without current is
motor.		motor and label its parts.	made to rotate in
10 Emploin the sense of	10 Stadauta - Ilastin famoration - n	10. Starlants as multitudes	magnetic field?
10. Explain the concept of	10. Students collect information on	10. Students complete the	10. Could the ring be
Electromagnetic induction.	electromagnetic induction.	nomework.	levitated if DC is used?
11.Discussion and demonstrate Faraday's	11. Students explain Faraday's law.	11. Students write Lenz law.	11. Is there emf in an open
law and Lenz law	1		circuit?
12. Discussion and explain the	12. Students collect information on	12. Students read the	12. What is the equation of

applications of Faraday's law of electromagnetic induction.	applications of Faraday's law of electromagnetic induction.	biography of Faraday.	Faraday's law of induction?
13. Explain working of AC and DC generators.	13. Students making models of electric AC and DC generators.	13. Can AC and DC current flow in same wire?	13. What are the differences between AC and DC generators?

Check For Understanding Questions	TLM's (Digital+Print)	
1. Factual:		
1. Why steel is not used in solenoid?	1. Used prepared Quiz	
2. Why does a moving charge experience a force in the magnetic field?	paper.	
3. How does Lenz's law relate to Faraday's law?		
	2. Utilized digital	
2. Open Ended/Critical Thinking:	classroom.	
1. What happens to the magnetic field when the number of turns in the coil is increased?		
2. Why DC generators are not used in modern vehicles?	3. Provide video links	
3. What happens if Earth loses its magnetic field?	QR codes,	
	DIKSHA App	
3. Student Practice Questions & Activities:		
1. Are the magnetic field lines closed? Explain.	4. YouTube video	
2. How can you verify that a current carrying wire produces a magnetic field with the help of an experiment?	links	
3. Explain the working of electric motor with a neat diagram.		
4. Explain the working of DC generator with a neat diagram.		
Assessment:		
1. Describe an activity to find magnetic field due to a straight wire carrying current.		
2. Explain Faraday's law of induction with the help of an activity.		
3. Draw a neat diagram of an AC generator. Name the parts		
4. Write the applications of Faraday's law of electromagnetic induction.		
5. Collect information about the generation of current by using Faraday's law		

SIGNATURE OF THE TEACHER

SIGNATURE OF THE HEADMASTER