

MODEL LESSON PLAN

CLASS: 09 SUB

SUBJECT: PS

Name of the Teacher: M.Srinivasa Rao

Name of the School: A.G.K.M.H.School, Gudivada

Name of the	Торіс	No.of Periods	Timeline for teaching		Any specific
Lesson/Unit		Required	From	То	information
Gravitation (Chapter – 8)	Uniform circular motion	2	xx/xx/xxxx	xx/xx/xxxx	
	Universal law of gravitation	2	xx/xx/xxxx	xx/xx/xxxx	
	Free fall	3	xx/xx/xxxx	xx/xx/xxxx	
	Weight	1	xx/xx/xxxx	xx/xx/xxxx	
	Centre of gravity	2	xx/xx/xxxx	xx/xx/xxxx	
	Stability	2	xx/xx/xxxx	xx/xx/xxxx	

Prior Concept/Skills:	
1. Define acceleration due to gravity?	
2. Express the equations of uniform accelerated motion.	
3. Does the velocity of the body change in uniform circular motion?	
Learning Outcomes:	No. of Periods
1. Seek answers to queries on their own of "Why must you bend forward when carrying a heavy load on your back"?	1
2. Describes scientific discoveries and inventions of laws in gravitation.	1
3. Communicates the findings and conclusions effectively of universal gravitational law.	1
4. Uses scientific conventions and equations to represent various quantities of Universal gravitational law.	1
5. Derives formulae, equations, and laws of expression for force of gravity.	1
6. Measures weight of an object using spring balance.	1
7. Applies learning to hypothetical situations of weight of an object at moon.	1
8. Applies learning to hypothetical situations of weight of an object at equator and poles, possibility of life on other planets.	1
9. Explains processes and phenomena of rotation and revolution of planets and satellites.	1
10. Draws labelled diagrams of the centre of gravity of regular and irregular-shaped objects.	1
11. Applies scientific concepts in daily life of stability concept.	1
12. Relates processes and phenomena with causes and effects of centre of gravity and stability.	1

3. Students assess the stability of objects by finding the center of gravity of objects used in everyday life.

Explicit Teaching/Teacher Modelling	Group Work	Independent Work	Notes for:
(I Do)	(We Do)	(You Do)	
1. Discussion and demonstrate activity	1. Students observe the entire	1. Students write the definition	1. Which physical quantity is
on uniform circular motion.	activity.	of uniform motion.	constant in uniform
			motion?
2. Explain and draw velocity vectors for	2. "In uniform circular motion,	2. Students draw velocity	2. Why uniform circular
a body in a uniform circular motion.	speed is constant but velocity is	vectors at different points.	motion is called
	changes" - Discuss		accelerated motion?
3. Explain the concepts of centripetal	3.Students derive the formula of	3. Students give a reason, why	3. What factors affect the
acceleration and centripetal force.	centripetal acceleration.	centripetal force acting	centripetal force?

4. Explain and derivation of the universal law of gravitation.	4. Students collect information on the universal law of gravitation.	4. Students write the Universal law of gravitation.	4. What is the value of G?
5. Explain problems and solutions to Newton's gravitational law.	5. Students solved the problems on Newton's gravitational law.	5. Students complete the homework.	5. Why is G called a universal constant?
6. Explain and conduct an activity on acceleration is independent of masses with help of small paper and book.	6."Acceleration due to gravity changes due to change in distances of objects from the center of the earth" –Group discussion	6. Students write the values of G, R and g values.	6. $g = GM/R^2$, Explain terms in it.
7. Explain the direction of g, when freely falling bodies and vertically projected bodies.	7. Students write the equations of motion for freely falling bodies.	7. Students write the equations of motion for vertically projected bodies.	7. Give an example for the speed of the object is zero, but g is not zero.
8. Explain the problems and solutions on freely falling and vertically projected bodies.	8. Students solved the problems on acceleration due to gravity.	8. Students complete the homework.	8. What is the S.I unit of g?
9. Explain the concept of Weight and conduct an activity to measure the weight of free-fall body.	9. Students conduct this activity and record the observations.	9. Why does the weight of a body will be zero during free fall? Give reason	9. Why do two bodies of different masses fall at the same rate?
10. Discussion and explain center of gravity with activities.	10. Can an object have more than one center of gravity? – Group discussion	10. Students write the definition of the center of gravity.	10. Does the center of gravity depend on size?
11. Explain and conduct activity on find the center of gravity of regular shaped bodies (Meter scale, Square, Rectangle, Circle and Triangle)	11. Students determine the center of gravity of given regular-shaped body.	11. Students estimated the center of gravity of a given object.	11. Where does the center of gravity of a ring lie?
12. Explain and conduct activity on find the center of gravity of irregular shaped bodies (India map)	12. Students explain the finding of the center of gravity of the irregular-shaped body.	12. Students complete the homework.	12. Which method would be most helpful in locating the center of gravity of an object?
13. Explain the location of the center of gravity is important for stability with suitable activities.	13. Students collect information on the relation between the center of gravity and stability.	13. Why is a low center of gravity more stable?	13. How does the center of gravity affect stability?

Check For Understanding Questions	TLM's	
1. Factual:	(Digital + Print)	
1. Which country has the highest gravity on Earth?		
2. Why is the weight of an object on the moon $1/6^{th}$ its weight on the earth?	1. Used prepared	
3. Does the center of gravity of a body exist outside the body?	Quiz paper.	
2. Open Ended/Critical Thinking:	2. Utilized digital	
1. What would have happened if the Earth did not rotate?	classroom.	
2. Why does the weight of an object depend on its location?		
3. Why is the acceleration due to gravity not constant?	3. Provide video links	
3. Student Practice Questions & Activities:	QR codes,	
1. A ball is projected vertically up with a speed of 50 m/s. Find the maximum height, the time to reach the maximum height, and the speed at the maximum height ($g=10 \text{ m/s}^2$)	DIKSHA App	
2. Explain some situations where the center of gravity of man lies outside the body.	4. YouTube video	
3. How can you find the center of gravity of a India map made of steel? Explain.	links	
4. Explain why a long pole is more beneficial to the tight rope walker if the pole has slight bending.		
Assessment:		
1. State the universal law of gravitation and explain it.		
2. A stone is thrown vertically up from the tower of height 25 m with a speed of 20 m/s. What time does it take to reach th	e ground? ($g = 10 \text{ m/s}^2$)	
3. Draw the center of gravity of the following uniform objects.a) Equilateral triangle b) Square c) Circle		
4. When does an object get stability?		

SIGNATURE OF THE TEACHER

SIGNATURE OF THE HEADMASTER

VISITING OFFICER WITH REMARKS