Srini Science Mind

NEW

$9^{\text {th }}$ class
 PHYSICAL SCIENCE
 MODEL LESSON PLAN

M.SRINIVASA RAO, SA(PS) AGKMHS GUDIVADA PH: 9848143855

MODEL LESSON PLAN

CLASS: 09

Name of the Lesson/Unit	Topic	No.of Periods Required	Timeline for teaching		Any specific information
			From	To	
UnitsandGraphs(Chapter-12)	Physical quantities - Units	1	xx/xx/xxxx	xx/xx/xxxx	
	Fundamental quantities-Units	1	xx/xx/xxxx	xx/xx/xxxx	
	Derived quantities-Units	1	$\mathrm{xx} / \mathrm{xx} / \mathrm{xxxx}$	xx/xx/xxxx	
	SI system	1	xx/xx/xxxx	xx/xx/xxxx	
	Units of conversion	1	xx/xx/xxxx	xx/xx/xxxx	
	Rules of writing units	1	xx/xx/xxxx	xx/xx/xxxx	
	Graphs	4	xx/xx/xxxx	xx/xx/xxxx	

Prior Concept/Skills:

1. Write fundamental quantities.
2. Write some units of measurements expressed in the name of scientists.
3. What is the horizontal line in a graph?

Learning Outcomes:

1. Classifies physical quantities as fundamental and derived quantities based on properties.
2. Classifies physical units as fundamental and derived units based on properties.
3. Measures physical quantities using appropriate apparatus, instruments, and devices.
4. Uses scientific conventions, symbols, and equations to represent various quantities and units of SI units.
5. Calculates using the data given Conversion of units
6. Draws graphs and interprets the data.'
7. Analyses and interprets Distance - Time, Velocity - Time graphs
8. Calculates Slope in Curved Graph.
9. Calculates the area of graphs.
10. Draws conclusion from graphs.

Induction/Introduction:

Experience and Reflection:

1. Students will learn the measurement systems of things used in daily life.
2. Students can show any information meaningfully through graphs.
3. Students illustrate information by making graphs.

Explicit Teaching/Teacher Modelling (I Do)	Group Work (We Do)	Independent Work (You Do)	Notes for:
1. Discussion and explain the units of physical quantities.	1. Students collect information on the measuring of mass of the substance in how many ways.	1. Students give a reason. Which is bigger 2 kg or 900g of sugar bags?	1. What is a physical quantity?

2. Discussion and explain the units of measurements.
3. Explain Fundamental quantities and Fundamental units.
4. Discussion and conduct an activity on Derived quantities and Derived units with help of measure the surface area of book using a scale.
5. Discussion and explain Unit Conversion.
6. Explain the rules of writing units.
7. Discussion and demonstrate the steps in the construction of a graph.
8. Explain and draw a graph of Distance-Time.
9. Discussion and demonstrate the draw a graph of Mass - Extension.
10. Explain the graph of Pressure Volume.
11. Discussion and explain the determine slope in curved graph and area of graph.
12. Can we express the mass of chalk in a kilogram? - Group discussion.
13. Students express the measuring systems
14. Students measure the area of a given textbook and express their units.
15. Students simply approach the conversion methods.
16. Students observe the rules of writing units.
17. Students collect information on the steps in the construction of a graph.
18. Students draw the distance-time graph in their own way.
19. Students carefully identify the values on X and Y axis.
20. Students plot the graph.
21. Students find the slope of a given graph.
22. Students give examples of physical quantities units.
23. Students write the common difference in MKS and SI systems.
24. Students complete the homework.
25. Students will solve the problems.
26. Students read the units in the names of scientists.
27. Students express the steps in the construction of a graph.
28. Students complete the homework.
29. Students draw the massExtension graph in their own way.
30. Students follow the construction steps in graph.
31. Students complete the homework.
32. What is a unit? Where it is placed?
33. What are fundamental quantities?
34. Kelvin a derived unit?
35. Which system of units is universally accepted?
36. dB is the unit for?
37. What is Range?
38. What is a graph?
39. What is Hooke's law?
40. Which variable is taken on x -axis?
41. What is the area of graph?

Check For Understanding Questions

1. Factual:

TLM's (Digital + Print)

1. Used prepared Quiz paper.

2. Open Ended/Critical Thinking:

1. Is displacement a fundamental quantity?
2. What happens if unknown the units of physical quantities?
3. What could be the relation between the two quantities when the graph is a straight line?

3. Student Practice Questions \& Activities:

1. Differentiate fundamental quantities and derived quantities.
2. Write any four rules of writing units of measurements.
3. Show that $v=u+a t$ in the graphical method.
4. What is slope of the straight line graph?

Assessment:

1. Draw a graph to the given data.

Velocity $(\mathrm{m} / \mathrm{s})$	0	2	5	8	11	14	16
Time (sec)	0	1	2	3	4	5	6

2. How do you appreciate the role of graphs in solving problems?
3. Write steps in the construction of a graph to the given data in a tabular form.
4. Find the velocity from the graph at A.

SIGNATURE OF THE TEACHER

