Is Matter Around Us Pure?

Pure Substance

- A pure substance is a homogeneous material with definite, invariable chemical composition and physical and chemical properties.
- A pure substance consists of only one type of atoms or molecules.
- On the basis of their chemical composition, pure substances are classified into elements and compounds.

Impure Substance

• Impure substances are mixtures of two or more elements, compounds or both, and they generally have different compositions and properties in their different parts.

What is a Mixture?

- A mixture contains more than one substance mixed in any random proportion. For example: milk, soil, lemon juice etc.
- Mixtures are constituted by more than one kind of pure form of matter known as a substance.
- A substance cannot be separated into other kinds of matter by any physical process.
 Example: Dissolved sodium chloride can be separated from water by the physical process of evaporation.
 However sodium chloride itself is a substance and cannot be separated by physical processes into its chemical constituents.

Properties of a Mixture

- In a mixture, two or more elements or compounds are not chemically combined together.
- The constituents of a mixture retain their original properties.
- The constituents of a mixture can be separated by using a physical process such as hand picking, filtration, holding a magnet etc.

Types of Mixtures

Homogeneous mixture

A mixture which has uniform composition and properties throughout its mass is called a homogeneous mixture.

Example: All **solutions** such as sugar solution, salt solution etc.

Heterogeneous mixture

A mixture which has a different composition and properties in different parts of their mass is called a heterogeneous mixture.

Example: Suspension (sand mixed with salt, sugar in oil) and colloids (milk in water).

Solution

• A homogeneous mixture of two or more substances which are chemically non-reacting, whose composition can be varied within certain limits, is called a solution.

Solution = Solute + Solvent

- Solute: A substance which gets dissolved in a solvent is called a solute.
- Solvent: A substance in which a solute gets dissolved is called a solvent.

Concentration of a Solution

- The properties of a solution depend upon the nature of the solute and the solvent, and also on the proportion of the dissolved solute.
- A solution which has a high quantity of solute is said to be a concentrated solution, and a solution which has comparatively lesser quantity of solute is said to be a dilute solution.
- The concentration of a solution is the amount of solute present in a given amount (mass or volume) of solution or the amount of solute dissolved in a given mass or volume of solvent.

Concentration of Solution = $\frac{\text{Amount of Solute Amount}}{\text{of Solution}}$

Or

Concentration of Solution = $\frac{\text{Amount of Solute}}{\text{Amount of Solvent}}$

Methods of Expressing the Concentration of a Solution

Mass by Mass percentage of a Solution = $\frac{Mass\ of\ Solute}{Mass\ of\ Solution} \times 100$

Mass by Volume percentage of a Solution = $\frac{Mass\ of\ Solute}{Volume\ of\ Solution} \times 100$

Saturated Solution

A solution, in which more solute cannot be dissolved at that temperature, is called a saturated solution.

Unsaturated Solution

A solution, in which more quantity of solute can be dissolved without raising its temperature, is called an unsaturated solution.

Solubility

The maximum amount of a solute which can be dissolved in 100 grams of a solvent at a specified temperature is known as the solubility of that solute in that solvent at that temperature.

Effect of Temperature and Pressure on Solubility

The effect of temperature and pressure on the solubility of a substance is as follows:

- The solubility of solids in liquids usually increases on increasing the temperature and decreases on decreasing the temperature.
- The solubility of solids in liquids remains unaffected by changes in pressure.
- The solubility of gases in liquids usually decreases on increasing the temperature and increases on decreasing the temperature.
- The solubility of gases in liquids increases on increasing the pressure and decreases on decreasing the pressure.

Distinguishing Properties of Solution, Suspension and Colloidal Solution

Properties											
Solution			Suspension			Colloids					
A solution is a homogeneous			A suspension is a			A colloid is a homogeneous					
mixture.			heterogeneous mixture.			looking heterogeneous mixture.					
The dispersion medium is			Solids are dispersed in any			Particles are dispersed in a					
generally liquid.			medium such as liquid or gas.			continuous medium.					
Size of the particle is about			Very fine particles, about			Particles having a size					
10 ⁻¹⁰ m.			10 ⁻⁷ m.			between 10 ⁻¹⁰ m and 10 ⁻⁷ m.					
Due to very small particle size,			_	The particles of a suspension			Colloids are big enough to				
they do not scatter a beam of			scatter a beam of light			scatter a beam of light passing					
light passing through a			passing through it and make			through it and make its path					
solution. So, the path of light			its path visible.			visible.					
	is not visible in a solution.			Diagram dankatana			auhatanaa.				
Dispersed substance:			Dispersed substance: Cannot pass through a			Dispersed substance:Can pass through a filter					
 Can pass through a filter paper and a semi- 			filter paper or through a			paper but not through a					
permeable membrane.			semi-permeable			semi-permeable					
 It is not visible to the naked 			membrane.			membrane.					
eye.			 It is visible to the naked 			 It is not visible to the 					
 They do not settle down. 			eye.			naked eye.					
			They settle down after			• They do not settle down.					
			sometime.								
Example:			Example:			Example:					
Caludian	C = 1,14 =	Calmant	Solution	Solute	Solvent		Disper	Disper			
Solution Salt	Solute NaCl	Solvent Water	Chalk in	Chalk	Water		sed phase	sion			
solution	INACI	vv alei	water	Ca 1	X 7-4-			mediu			
Sugar	Sugar	Water	Sand in	Sand	Water			m			
solution	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		water Coagula	Coagul	Water	Emulsio	Liquid	Liquid			
Copper	CuSO ₄	Water	ted	ated	vv atc1	n					
sulphate			matter	matter		Sol	Solid	Liquid			
solution			matter	matter	1	Aerosol	Liquid	Gas			

Dispersion System in Colloids

- A system consisting of a substance distributed as very small particles of a solid, droplets of liquids or tiny bubbles of a gas in a suitable medium is called as **dispersion system**.
- The distributed substance in the solution is called as dispersed phase.
- The medium in which the distributed substance is dispersed is referred to as the **dispersion medium**.

Tyndall Effect

• Tyndall effect can be defined as the scattering of a beam of light by colloidal particles present in a colloidal solution.

Tyndall Effect

- This effect can be observed when a fine beam of light passes through a small hole in a dark room. This effect occurs due to the scattering of light by particles of dust or smoke present in the air.
- The Tyndall effect can also be observed when sunlight passes through the canopy of a dense forest. In the forest, the mist contains tiny droplets of water which act as colloidal particles dispersed in the air.

Physical and Chemical Changes

Element

 An element can be defined as a basic form of matter which cannot be broken down into simpler substances by any physical or chemical means.

Characteristics of an Element

- An element is made up of only a single type of atoms.
- It is a pure and homogeneous substance.
- It has a fixed melting and boiling point.
- An atom is the smallest particle of an element which takes part in a chemical reaction.
- An element may chemically react with other elements or compounds.
- An element can occur in the solid, liquid or gaseous state.

Classification of Elements

Metals	Non-metals	Metalloids
Have metallic lustre.	Do not have lustre.	Properties are midway
 Are good conductors of heat and 	 Are bad conductors of heat 	between metals and
electricity.	and electricity.	non-metals.
Are malleable and ductile.	Are neither malleable nor ductile.	 Contain one kind of
Are solids.	 Are solids, liquids and gases. 	atoms. (Mono-atomic)
Contain one kind of	 Contain two kinds of atoms. 	
atoms.(Mono-atomic)	(Mono-atomic or di-atomic)	Examples: Boron,
	Examples:	germanium, silicon,
Examples: Iron, copper, sodium, calcium	Solid: Carbon, silicon, phosphorous	arsenic, antimony, bismuth
etc.	etc.	etc.
Exceptions:	<u>Liquid</u> : Bromine	
1. Zinc is non-malleable and non-	Gas: Hydrogen, chlorine etc.	
ductile.	Exceptions:	
2. Mercury is a liquid at room	1. Carbon fibre is ductile but	
temperature.	not malleable.	
3. Tungsten is a poor conductor of	2. Graphite is a good conductor	
electricity.	of electricity.	
4. Sodium and potassium are not hard.	3. Iodine and graphite are	
They are so soft that they can be cut	lustrous.	
easily with a knife.		

Compound

- A compound is a pure substance composed of two or more elements combined chemically in a fixed proportion by mass.
- The properties of compounds are different from the properties of their constituent elements. Example: H₂O, CO₂ etc.
- The smallest part of a compound is a molecule. All the molecules of a compound are alike and have properties similar to that of the compound.

Compound	Molecular	Composition of	Structure
	Formula	molecule	
1. Water	H ₂ O	2 atoms of hydrogen and 1 atom of oxygen	Н
2. Iron sulphide	FeS	1 atom of iron and 1 atom of sulphur	Fe S

Characteristics of Compounds

- Components in a compound are present in a definite proportion.
- A compound has a homogeneous composition.
- Particles in a compound are of one type.
- A compound is made up of one or more atoms of the same or different elements.
- In a compound the elements are present in a fixed ratio by mass.
- A compound can be divided into simpler substances by a chemical process.
- The physical and chemical properties of a compound are completely different from those of its constituents.

M.Srinivasa Rao, SA(PS) SPSMIHS, Gudivada PH: 9848143855 Visit: srini science mind

