Chapter -3 Atoms and Molecules

1. Introduction:

- Laws of Chemical Combination: The chapter begins by establishing the fundamental rules that govern how elements combine to form compounds.
- Law of Conservation of Mass (by Antoine Lavoisier): Mass can neither be created nor destroyed in a chemical reaction. (or) The total mass of the reactants (substances that react) is always equal to the total mass of the products (substances formed) in a chemical reaction. (or) During a chemical reaction, the sum of the masses of the reactants and products remains unchanged. This is known as the Law of Conservation of Mass. Experiment: Burning of magnesium ribbon. The mass of magnesium oxide formed is equal to the mass of magnesium plus the mass of oxygen that combined with it.
- Law of Constant Proportions (by Joseph Proust): In a chemical substance, the elements are always present in a definite proportion by mass.(or) In a pure chemical compound, elements are always present in a definite proportion by mass. This is known as the Law of Definite Proportions.

Example: Water (H₂O) is always made up of hydrogen and oxygen in a mass ratio of 1:8, regardless of its source (rain, river, well, etc.).

- **2. Dalton's Atomic Theory:** John Dalton proposed a theory to explain the laws of chemical combination. *Postulates:*
 - 1. All matter is made of very tiny particles called atoms, which participate in chemical reactions.
 - 2. Atoms are indivisible particles, which cannot be created or destroyed in a chemical reaction.
 - 3. Atoms of a given element are identical in mass and chemical properties.
 - 4. Atoms of different elements have different masses and chemical properties.
 - 5. Atoms combine in simple whole-number ratios to form compounds.
 - 6. In a given compound, the relative number and kinds of atoms are constant.

Limitations of Dalton's Atomic Theory:

- Atoms are now known to be divisible, containing subatomic particles (electrons, protons, neutrons).
- Atoms of the same element can have different masses (isotopes).
- It failed to explain the existence of allotropes (e.g., diamond and graphite, both forms of carbon).

3. What is an Atom?

The smallest particle of an element that can exist and may or may not have independent existence. Atomic radius is measured in nanometres.

$$1/10^9 \text{ m} = 1 \text{ nm}$$

 $1 \text{ m} = 10^9 \text{ nm}$

Example: Atomic radius of Hydrogen = 10^{-10} m.

Symbols: Used to denote atoms of elements. Derived from their English or Latin names.

Rules for writing Symbols: First letter is always a capital letter.

- * If two letters, the second is a small letter.
- * Examples: C (Carbon), Ca (Calcium), Co (Cobalt) Note: 'Co' is Cobalt, 'CO' is a compound, Carbon Monoxide.

Element	Symbol	Element	Symbol	Element	Symbol
Aluminium	ΑI	Copper	Cu	Nitrogen	N
Argon	Ar	Fluorine	F	Oxygen	0
Barium	Ba	Gold	Au	Potassium	K
Boron	В	Hydrogen	Н	Silicon	Si
Bromine	Br	lodine	1	Silver	Ag
Calcium	Ca	Iron	Fe	Sodium	Na
Carbon	С	Lead	Pb	Sulphur	S
Chlorine	CI	Magnesium	Mg	Uranium	U
Cobalt	Co	Neon	Ne	Zinc	Zn

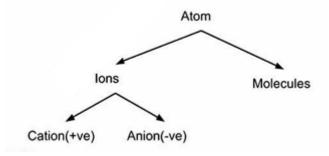
4. Atomic Mass: Since atoms are very light, we use a relative scale.

Definition: Atomic mass is the relative mass of an atom compared to the mass of a carbon-12 atom, which is taken as exactly 12 atomic mass units.

Unit is Atomic Mass Unit (u).

1 u = 1/12 th the mass of a carbon- 12 atom.

Why Carbon-12?


It is chosen as the standard because it is a solid and can be handled easily.

Example: Hydrogen has an atomic mass of ~1 u, oxygen has ~16 u.

11	ine mass of a t u, oxygen has a to u.					
	Element	Atomic Mass (u)				
	Hydrogen	1				
	Carbon	12				
	Nitrogen	14				
	Oxygen	16				
	Sodium	23				
	Magnesium	24				
	Sulphur	32				
	Chlorine	35.5				
	Calcium	40				

How do atom exist?

Atoms of most elements are not able to exist independently. Atoms form molecules and ions.

5. What is a Molecule?

A molecule is the smallest particle of a substance (element or compound) that can exist independently and shows all the properties of that substance.

Molecules of Elements:

Formed by atoms of the same element: Can be monoatomic (Noble gases: He, Ne, Ar), diatomic (H₂, N₂, O₂, Cl₂), triatomic (O₃ - Ozone), or tetratomic (P₄ - Phosphorus).

Molecules of Compounds: Formed by atoms of two or more different elements chemically combined in a fixed ratio.

Examples: H₂O (2 H, 1 O), CO₂ (1 C, 2 O), NH₃ (1 N, 3 H).

Atomicity: Number of atoms in a molecule of an element.

Type	Examples	Atomicity	
Monoatomic	He, Ne, Ar	1	
Diatomic	H ₂ , O ₂ , N ₂ , Cl ₂	2	
Triatomic	O ₃	3	
Polyatomic	P4, S8	4, 8	

6. Ions: Charged particles. They can be positively charged (cations) or negatively charged (anions).

Cations: Formed when an atom loses one or more electrons.

Example: Sodium ion (Na⁺), Calcium ion (Ca²⁺).

Anions: Formed when an atom gains one or more electrons.

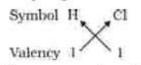
Example: Chloride ion (Cl⁻), Oxide ion (O²⁻).

Polyatomic Ions: A group of atoms carrying a charge.

Example: Ammonium (NH₄+), Hydroxide (OH-), Carbonate (CO₃²⁻), Sulphate (SO₄²⁻).

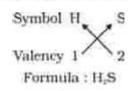
7. Chemical Formulae: A chemical formula represents the composition of a molecule of a substance.

Rules for Writing Formulae:

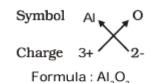

,							
Vale ncy	- Name of Symbol ion	Non- metallic element	Symbol	Polyatomic ions	Symbol		
1.	Sodium Na ⁺ Potassium K ⁺ Silver Ag ⁺ Copper (I)* Cu ⁺	Hydrogen Hydride Chloride Bromide Iodide	H* H' Cl· Br· I-	Ammonium Hydroxide Nitrate Hydrogen carbonate	NH ₄ OH ⁻ NO ₃ ⁻ HCO ₃ ⁻		
2.	Magnesium Mg ²⁺ Calcium Ca ²⁺ Zinc Zn ²⁺ Iron (II)* Fe ²⁺ Copper (II)* Cu ²⁺	Oxide Sulphide	O ²⁻ S ²⁻	Carbonate Carbonate Sulphite Sulphate	CO ₃ ²⁻ SO ₃ ²⁻ SO ₄ ²⁻		
3.	Copper (II)* Cu²* Aluminium Al³* Iron (III)* Fe³*	Nitride	N³-	Phosphate	PO ₄ ³⁻		

- 1. The valencies (combining capacity) of the two elements/ions are crossed over to become the subscript of the other.
- 2. For metals and non-metals, the metal is written first (Ex: NaCl).
- 3. For compounds with polyatomic ions, the ion is enclosed in brackets if the subscript is more than 1 (Ex: Ca(OH)₂).

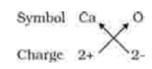
Formulae of simple compounds:



1. Formula of hydrogen chloride


Formula of the compound would be HCI.

2. Formula of hydrogen sulphide



Some more examples

(a) Formula for aluminium oxide:

(b) Formula for calcium oxide:

Important Formulae to Remember:

Water: H₂O Ammonia: NH₃ Carbon Dioxide: CO₂ Glucose: C₆H₁₂O₆ Common Salt: NaCl Hydrochloric Acid: HCl Sulphuric Acid: H₂SO₄

8. Molecular Mass: The sum of the atomic masses of all the atoms in a molecule of a substance.

Calculation: It is expressed in atomic mass units (u).

Example 1: (H_2O) : $(2 \times Atomic mass of H) + (1 \times Atomic mass of O) = <math>(2 \times 1) + (1 \times 16) = 18$ u Example 2: (HNO_3) : $(1 \times Atomic mass of H) + (1 \times Atomic mass of N) + (3 \times Atomic mass of O)$

= 1 + 14 + 48 = 63 u

9. Formula of Unit Mass: The formula unit mass of a substance is a sum of the atomic masses of all atoms in a formula unit of a compound.

Example: Sodium chloride as discussed above, has a formula unit NaCl.

Its formula unit mass can be calculated as $1 \times 23 + 1 \times 35.5 = 58.5 \text{ u}$

10. Key Formulae and Calculations

- 1. Number of Moles (n) = (Given Mass) / (Molar Mass) or mass / M
- 2. Number of Particles = Number of Moles \times Avogadro's Number = $n \times N_a = (mass / Molar Mass) \times 6.022 \times 10^{23}$

Example Problem: Calculate the number of moles for 20 g of water (H₂O).

Step 1: Molar mass of $H_2O = (2 \times 1) + 16 = 18$ g/mol.

Step 2: Number of moles (n) = Given Mass / Molar Mass = $20 \text{ g/mol} \approx 1.11 \text{ moles}$.